

NOTICE: These documents are instruments of professional service, and information contained therein is incomplete unless used in conjunction with DLR Group's interpretations, decisions, observations and administrations. Use or reproduction of these documents in whole or in part without DLR Group's consent is in violation of common law, copyrights, statutory and other reserved rights, which preempts state and local public records act.

DLR Group inc., an Arizona corporation Architecture Engineering Planning Interiors 6225 North 24th Street, Suite 250, Phoenix, AZ 85016-2020 tel 602/381-8580 fax 602/956-8358 phoenix@dlrgroup.com

, Star

SECTION 00 0110 - TABLE OF CONTENTS

VOLUME I

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS Section 00 0110 Table of Contents Section 00 1113 Invitation for Bids Section 00 2113 Instructions to Bidders Substitution Request Form Section 00 3132 Geotechnical Data (Soils Report) Geotechnical Engineering Report Section 00 4100 Bid Form for Combined Contract Section 00 4313 Bid Bond Section 00 4336 List of Subcontractors Section 00 4519 Non-Collusion Statement Section 00 4546 Governmental Certifications Anti-Terrorism Warranty Legal Arizona Workers Act Compliance **Qualification & Certification Form** Reference List Intensions Concerning Subcontracting Section 00 6113 Payment and Performance Bond Section 00 6536 Contract Performance Warranty Section 00 7213 General Conditions - Stipulated Sum (Single-Prime Contract) General Conditions of the Contract for Construction; AIA Document A201 Section 00 7300 Supplementary Conditions Conditional Waiver and Release on Progress Payment Conditional Waiver and Release on Final Payment Unconditional Waiver and Release on Progress Payment Unconditional Waiver and Release on Final Payment

DIVISION 01 - GENERAL REQUIREMENTS

Section 01 1000	Summary
Section 01 2100	Allowances
Section 01 2500	Substitution Procedures
Section 01 2613	Requests for Interpretation
	Request for Information (Form)
Section 01 2973	Schedule of Values
Section 01 2976	Progress Payment Procedures
Section 01 3119	Project Meetings
Section 01 3200	Construction Documentation
Section 01 3216	Construction Progress Schedules
Section 01 3323	Shop Drawings, Product Data, and Samples
	Schedule of Submittals
Section 01 3333	Electronic Drawings
	AIA Document C106 - 2007, Digital Data Licensing Agreement
Section 01 4200	References
Section 01 4500	Quality Control
Section 01 4520	Testing, Adjusting, and Balancing for HVAC
Section 01 5000	Temporary Facilities and Controls
0 1 01 000	

Section 01 7123 Field Engineering

- Section 01 7329 Cutting and Patching
- Section 01 7423 Final Cleaning
- Section 01 7700 Closeout Procedures
- Section 01 7823 Operation and Maintenance Data
- Section 01 7836 Warranties
- Section 01 7839 Project Record Documents
- Section 01 7845 Spare Parts and Maintenance Materials
- Section 01 7900 Demonstration and Training

DIVISION 03 - CONCRETE

Section 03 3000 Cast-In-Place Concrete

DIVISION 06 - WOOD, PLASTICS AND COMPOSITES

Section 06 1000 Rough Carpentry

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

- Section 07 2600 Under-Slab Vapor Retarder
- Section 07 8400 Firestopping
- Section 07 9200 Joint Sealants

DIVISION 08 - OPENINGS

- Section 08 1113 Hollow Metal Doors and Frames
- Section 08 1416 Flush Wood Doors
- Section 08 3113 Access Doors and Frames
- Section 08 7100 Door Hardware
- Section 08 8000 Glazing
- Section 08 9100 Louvers and Vents

DIVISION 09 - FINISHES

- Section 09 2116 Gypsum Board Assemblies
- Section 09 3000 Tiling
- Section 09 5113 Acoustical Panel Ceilings
- Section 09 6513 Resilient Base and Accessories
- Section 09 6519 Resilient Tile Flooring
- Section 09 6816 Sheet Carpeting
- Section 09 7700 Sanitary Wall and Ceiling Panels
- Section 09 8100 Acoustical Insulation
- Section 09 9100 Painting
- Section 09 9600 High-Performance Coatings

DIVISION 10 - SPECIALTIES

Section 10 1400	Signage
	Signage Schedule
Section 10 2113	Toilet Compartments

- Section 10 2226 Accordion Folding Partitions
- Section 10 2800 Toilet and Bath Accessories
- Section 10 4400 Fire Protection Specialties

DIVISION 12 - FURNISHINGS

Section 12 3216 Manufactured Plastic-Laminate-Clad Casework

VOLUME II

DIVISION 22 - PLUMBING

- Section 22 0500 Common Work Results for Plumbing
- Section 22 0519 Meters and Gages for Plumbing Piping
- Section 22 0523 General-Duty Valves for Plumbing Piping
- Section 22 0529 Hangers and Supports for Plumbing Piping and Equipment
- Section 22 0553 Identification for Plumbing Piping and Equipment
- Section 22 0700 Plumbing Insulation
- Section 22 1116 Domestic Water Piping
- Section 22 1119 Domestic Water Piping Specialties
- Section 22 1316 Sanitary Waste and Vent Piping
- Section 22 1319 Sanitary Waste Piping Specialties
- Section 22 3300 Electric Domestic Water Heaters
- Section 22 4000 Plumbing Fixtures

DIVISION 23 - HEATING, VENTILATING AND AIR CONDITIONING

- Section 23 0500 Common Work Results for HVAC
- Section 23 0513 Common Motor Requirements for HVAC Equipment
- Section 23 0519 Meters and Gages for HVAC
- Section 23 0548 Vibration Controls for HVAC Piping and Equipment
- Section 23 0553 Identification for HVAC Piping and Equipment
- Section 23 0700 HVAC Insulation
- Section 23 0900 Instrumentation and Control for HVAC
- Section 23 0993 Sequence of Operation for HVAC Controls
- Section 23 2300 Refrigerant Piping
- Section 23 3113 Metal Ducts
- Section 23 3300 Air Duct Accessories
- Section 23 3700 Air Outlets and Inlets
- Section 23 8126 Split-System Heat Pumps

DIVISION 26 - ELECTRICAL

- Section 26 0500 Common Work Results for Electrical
- Section 26 0519 Low-Voltage Electrical Power Conductors and Cables
- Section 26 0526 Grounding and Bonding for Electrical Systems
- Section 26 0533 Raceways and Boxes for Electrical Systems
- Section 26 0923 Lighting Control Devices
- Section 26 2200 Low-Voltage Transformers
- Section 26 2413 Switchboards
- Section 26 2416 Panelboards
- Section 26 2726 Wiring Devices
- Section 26 2813 Fuses
- Section 26 2816 Enclosed Switches
- Section 26 2913 Enclosed Controllers
- Section 26 4313 Transient Voltage Suppression for Low-Voltage Power Circuits
- Section 26 5100 Interior Lighting

Section	26 5600	Exterior	Lighting
beenon	20 3000	LATCHIOL	Lighting

Section 26 6500 Electrical Special Inspections and Testing

DIVISION 27 - COMMUNICATIONS

- Section 27 0500 Common Work Results for Communications
- Section 27 1100 Communications Equipment Room Fittings
- Section 27 1300 Communications Backbone Cabling
- Section 27 1500 Communications Horizontal Cabling

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

- Section 28 0500 Common Work Results for Electronic Safety and Security
- Section 28 0513 Conductors and Cables for Electronic Safety and Security
- Section 28 1300 Access Control
- Section 28 1600 Intrusion Detection
- Section 28 3111 Digital, Addressable Fire-Alarm System

DIVISION 31 - EARTHWORK

Section 31 3116 Termite Control

END OF TABLE OF CONTENTS

DIVISION 22 - PLUMBING

Pages

Section 22 0500	Common Work Results for Plumbing	
Section 22 0519	Meters and Gages for Plumbing Piping	
Section 22 0523	General-Duty Valves for Plumbing Piping	
Section 22 0529	Hangers and Supports for Plumbing Piping and Equipment	
Section 22 0553	Identification for Plumbing Piping and Equipment	
Section 22 0700	Plumbing Insulation	
Section 22 1116	Domestic Water Piping	
Section 22 1119	Domestic Water Piping Specialties	
Section 22 1316	Sanitary Waste and Vent Piping	
Section 22 1319	Sanitary Waste Piping Specialties	
Section 22 3300	Electric Domestic Water Heaters	
Section 22 4000	Plumbing Fixtures	

SECTION 22 0500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

- 1. Piping materials and installation instructions common to most piping systems.
- 2. Transition fittings.
- 3. Dielectric fittings.
- 4. Mechanical sleeve seals.
- 5. Sleeves.
- 6. Escutcheons.
- 7. Grout.
- 8. Plumbing demolition.
- 9. Equipment installation requirements common to equipment sections.
- 10. Painting and finishing.
- 11. Concrete bases.
- 12. Supports and anchorages.
- 13. Coordination drawings.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. PE: Polyethylene plastic.
 - 3. PVC: Polyvinyl chloride plastic.

- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.6 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."
- D. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to 1/4-inch scale or larger, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Fire-suppression-water piping.
 - 2. Domestic water piping.
 - 3. Compressed air piping.
 - 4. HVAC hydronic piping.
 - 5. All equipment.
 - 6. HVAC ductwork.
 - 7. Electrical equipment and conduit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.

2.4 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 - 1. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 - 2. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
 - 3. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
- C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
- D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
- E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
- D. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.7 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish with set screw (security set screw).
- C. One-Piece, Cast-Brass Type: With set screw (security set screw).
 1. Finish: Polished chrome-plated.

2.8 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Contract Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.

- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated or Bare Piping at Wall and Floor Penetrations in Finished Spaces: Onepiece, cast-brass type with polished chrome-plated finish.
 - d. Insulated or Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece cast-brass type with polished chrome-plated finish.
 - e. Insulated or Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - f. Insulated or Bare Piping in Equipment Rooms: One-piece, cast-brass type.
- M. Sleeves are not required for core-drilled holes.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.

- 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- 3.2 PIPING JOINT CONSTRUCTION
 - A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
 - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
 - E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
 - F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
 - G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 4. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- K. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.7 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION

SECTION 22 0519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermometers.
 - 2. Gages.
 - 3. Test plugs.
- B. Related Sections:
 - 1. Division 22 Section "Domestic Water Piping" for domestic and fire-protection water service meters inside the building.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- 1.4 SUBMITTALS
 - A. Product Data: For each type of product indicated; include performance curves, indicating manufacturer's number, scale range.

PART 2 - PRODUCTS

2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Palmer Wahl Instruments Inc.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Die-cast aluminum, 7 inches long.
- C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.
- 2.2 THERMOWELLS
 - A. Manufacturers: Same as manufacturer of thermometer being used.
 - B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.3 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AMETEK, Inc.; U.S. Gauge Div.
 - 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 3. Ernst Gage Co.
 - 4. Palmer Wahl Instruments Inc.
 - 5. REO TEMP Instrument Corporation.
 - 6. Trerice, H. O. Co.
 - 7. Weiss Instruments, Inc.
 - 8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 9. Winters Instruments.
- B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Dry type, drawn steel or cast aluminum, 4-1/2-inch diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red or other dark-color metal.
 - 7. Window: Glass or plastic.
 - 8. Ring: Metal.
 - 9. Accuracy: Grade B, plus or minus 2 percent of middle half scale.
 - 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
 - 11. Range for Fluids under Pressure: Two times operating pressure.
- C. Pressure-Gage Fittings:
 - 1. Valves: NPS 1/4 brass or stainless-steel needle type.
 - 2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.4 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. MG Piping Products Co.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Co.
 - 6. Trerice, H. O. Co.
 - 7. Watts Industries, Inc.; Water Products Div.
- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- D. Core Inserts: One or two self-sealing rubber valves.
 1. Insert material for water service at 20 to 200 deg F shall be CR.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

- A. Install liquid-in-glass thermometers in the outlet of each domestic, hot-water storage tank.
- B. Provide the following temperature ranges for thermometers:
 - 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.
 - 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

- A. Install dry-case-type pressure gages for inlet and discharge of each pressure-reducing valve.
- B. Install dry-case-type pressure gages and snubbers at suction and discharge of each pump.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install thermowells with socket extending to center of pipe and in vertical position in piping tees where thermometers are indicated.
- C. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- D. Install needle-valve and snubber fitting in piping for each pressure gage.
- E. Install test plugs in tees in piping.

- F. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
- G. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION

SECTION 22 0523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Bronze lift check valves.
 - 3. Bronze swing check valves.
 - 4. Chainwheels.
- B. Related Sections:
 - 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.
- 1.4 SUBMITTALS
 - A. Product Data: For each type of valve indicated.
- 1.5 QUALITY ASSURANCE
 - A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 - 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for plug valves, for each size square plug-valve head.
 - 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 2. Butterfly Valves: With extended neck.

- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded or soldered.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.
- B. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Three piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded or soldered.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.

2.3 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Valves.
 - b. Jenkins Valves.
 - c. Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.4 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Valves.
 - b. Jenkins Valves.
 - c. Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Powell Valves.
 - h. Red-White Valve Corporation.
 - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- B. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Valves.
 - b. Jenkins Valves.
 - c. Stockham Division.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Red-White Valve Corporation.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.

- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball valves.
 - 2. Throttling Service: Ball valves.
 - 3. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 3 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two- or three-piece, full port, bronze with stainless-steel trim.
 - 3. Bronze Swing Check Valves: Class 150, bronze disc.

END OF SECTION

SECTION 22 0529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe positioning systems.
 - 8. Equipment supports.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 Section "Wet-Pipe Sprinkler Systems" for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7 with factors as indicated in the structural notes.
- B. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- D. Design seismic-restraint hangers and supports for piping and equipment, and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:

- 1. Steel pipe hangers and supports.
- 2. Thermal-hanger shield inserts.
- 3. Powder-actuated fastener systems.
- 4. Pipe positioning systems.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel." and AWS D1.4, "Structural Welding Code--Reinforcing Steel."
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. Bergen-Power Pipe Supports
 - 3. B-Line Systems, Inc.; a division of Cooper Industries.
 - 4. Carpenter & Paterson, Inc.
 - 5. Empire Industries, Inc.
 - 6. ERICO/Michigan Hanger Co.
 - 7. Globe Pipe Hanger Products, Inc.
 - 8. Grinnell Corp.
 - 9. GS Metals Corp.
 - 10. National Pipe Hanger Corporation.
 - 11. PHD Manufacturing, Inc.
 - 12. PHS Industries, Inc.
 - 13. Piping Technology & Products, Inc.
 - 14. Tolco Inc.
 - 15. Holdrite
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers:

- 1. B-Line Systems, Inc.; a division of Cooper Industries.
- 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
- 3. GS Metals Corp.
- 4. Power-Strut Div.; Tyco International, Ltd.
- 5. Thomas & Betts Corporation.
- 6. Tolco Inc.
- 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
- C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. MIRO Industries.
- D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
 - c. Portable Pipe Hangers.

- 2. Base: Plastic.
- 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Portable Pipe Hangers.
 - b. Miro.
 - 2. Bases: One or more plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structuralsteel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

- A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.
- B. Manufacturers:
 - 1. C & S Mfg. Corp.
 - 2. HOLDRITE Corp.; Hubbard Enterprises.
 - 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

- A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.
- 2.10 MISCELLANEOUS MATERIALS
 - A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 3. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 5. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
 - 6. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 4. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. C-Clamps (MSS Type 23): For structural shapes.

- 6. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 7. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 8. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
- 9. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
- 10. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 11. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 12. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 13. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 14. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- L. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- M. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- N. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.

- 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- 3. Secure piping to trapeze hangers with upper pipe clamps.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.
- G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.
- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- N. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Thermal-hanger shield inserts shall be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Thermal-hanger shield inserts shall be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 22 0553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Stencils.
 - 5. Valve tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Valve numbering scheme.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black.
 - 3. Background Color: White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.3 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Fiberboard or metal.
 - 2. Stencil Paint: Exterior, gloss, acrylic enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09.
- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels complying with ASME A13.1 on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; angle stop valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round.
 - b. Hot Water: 1-1/2 inches, round.

- 2. Valve-Tag Color:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
- 3. Letter Color:
 - a. Cold Water: White.
 - b. Hot Water: White.

END OF SECTION

SECTION 22 0700 - PLUMBING INSULATION

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral-fiber.
 - 2. Insulating cements.
 - 3. Adhesives.
 - 4. Mastics.
 - 5. Lagging adhesives.
 - 6. Sealants.
 - 7. Factory-applied jackets.
 - 8. Field-applied fabric-reinforcing mesh.
 - 9. Field-applied cloths.
 - 10. Field-applied jackets.
 - 11. Tapes.
 - 12. Securements.
 - 13. Corner angles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any). Indicate application of products.

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- D. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Pittsburgh Corning Corporation;
 - b. Knauf.
 - c. Johns Mansville.
 - d. Owens Corning.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ, ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

- E. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- F. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semi rigid board material with factory-applied ASJ jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide from one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- C. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F.
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Polyisocyanurate Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76-8.

- b. Foster Products Corporation, H. B. Fuller Company; 95-44.
- c. Marathon Industries, Inc.; 405.
- d. Mon-Eco Industries, Inc.; 44-05.
- e. Vimasco Corporation; 750.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-76.
 - a. Childers Products, Division of ITW; CP-76.
 Materials shall be compatible with insulation materials, jackets, and substrates.
 - Materials shall be compatible with insulation materials, jackets, an
 Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. PVDC Jacket for Indoor Applications: 4-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.

- 3. Color: White.
- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- 5. Factory-fabricated tank heads and tank side panels.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications 3-mil-thick, polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.

- 5. Handholes.
- 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

- 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.

- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

- A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: One finish coat over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Do not field paint aluminum jackets.

3.10 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Hot and Recirculated Hot Water:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Cellular Glass: 2 inches thick.
 - b. Mineral-Fiber: 2 inches thick.
- B. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. Refer to plumbing fixture specification section.
- C. Condensate and Equipment Drain Water:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-inch thick.
 - b. Flexible Elastomeric: 3/4 inch thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. PVC: 20 mils thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Aluminum, Corrugated, Stucco Embossed with Z-Shaped Locking Seam: 0.024 inch thick.

END OF SECTION

SECTION 22 1116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 - 2. Specialty valves.
- B. Related Section:
 - 1. Division 22 Section "Common Work Results for Plumbing" for transition and dielectric fittings, escutcheons, sleeves, sleeve seals and grout.

1.3 SUBMITTALS

- A. Product Data.
- B. Water Samples: Specified in "Cleaning" Article.
- C. Field quality-control reports.
- 1.4 QUALITY ASSURANCE
 - A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 - B. Comply with NSF 61 for potable domestic water piping and components.

1.5 PROJECT CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not proceed with interruption of water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
 - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-andsocket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.
 - 1. Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install soft copper Type K tubing with no joints under building slab according to CDA's "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance, or as indicated on drawings. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- D. Install shutoff valve immediately upstream of each dielectric fitting.

- E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
- F. Install domestic water piping level without pitch and plumb.
- G. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- I. Install piping at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- K. Install piping adjacent to equipment and specialties to allow service and maintenance.
- L. Install piping to permit valve servicing.
- M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- N. Install piping free of sags and bends.
- O. Install fittings for changes in direction and branch connections in above ground piping.
- P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- Q. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
- R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

- D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

3.4 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball valves for piping NPS 4 and smaller. Use gate valves for piping NPS 6 and larger.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

3.5 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. NPS 2 and Larger: Sleeve-type coupling.

3.6 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2.
- D. 3" and Larger: Use dielectric flange kits.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- B. Support vertical piping and tubing at base and at each floor.

- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.8 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.
 - 2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 - 3. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 3" and larger.

3.9 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors as identified in Division 22 Section "Common Work Results for Plumbing."

3.10 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls as identified in Division 22 Section "Common Work Results for Plumbing."

B. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Firestopping" for firestop materials and installations.

3.11 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building as identified in Division 22 Section "Common Work Results for Plumbing."

3.12 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

3.13 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Piping Inspections:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- C. Piping Tests:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.14 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 6. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 7. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.15 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- B. Prepare and submit reports of purging and disinfecting activities.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.16 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Under-building-slab, domestic water, building service piping, NPS 4 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.

- D. Aboveground domestic water piping, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.

3.17 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball valves for piping NPS 2 and smaller. Use ball or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball valves for piping NPS 2 and smaller. Use ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Memory-stop balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION

SECTION 22 1119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Thermostatic Mixing Valves
 - 6. Strainers.
 - 7. Outlet boxes.
 - 8. Hose bibbs.
 - 9. Wall hydrants.
 - 10. Water hammer arresters.
 - 11. Trap-seal primer valves.
- B. Related Sections include the following:
 - 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.
- C. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- B. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

- A. Hose-Connection Vacuum Breakers
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Arrowhead Brass Products, Inc.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. MIFAB, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
 - f. Woodford Manufacturing Company.
 - g. Zurn Plumbing Products Group.
 - 2. Standard: ASSE 1011.
 - 3. Body: Bronze, nonremovable, with manual drain.
 - 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
 - 5. Finish: Rough bronze.

2.2 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Industries, Inc.; Water Products Div.
 - 2. Zurn Plumbing Products Group; Standard: ASSE 1013.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 - 5. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.

2.3 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cash Acme.
- b. Conbraco Industries, Inc.
- c. Honeywell Water Controls.
- d. Watts Industries, Inc.; Water Products Div.
- e. Zurn Plumbing Products Group;.
- 2. Standard: ASSE 1003.
- 3. Pressure Rating: Initial working pressure of 150 psig.

2.4 THERMOSTATIC MIXING VALVES

- A. Primary, Thermostatic, Water Mixing Valves (Single High-Low):
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bradley Corporation.
 - b. Lawler Manufacturing Company, Inc.
 - c. Leonard Valve Company.
 - d. Powers; a Watts Industries Co.
 - e. Symmons Industries, Inc.
 - 2. Standard: ASSE 1017.
 - 3. Pressure Rating: 125 psig.
 - 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
 - 5. Material: Bronze body with corrosion-resistant interior components.
 - 6. Connections: Threaded inlets and outlet.
 - 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle, thermostat.
 - 8. Valve Finish: Rough bronze.
 - 9. Piping Finish: Copper.
 - 10. Refer to Schedule on Drawings for capacities and characteristics.

2.5 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 - 5. Drain: Factory-installed, hose-end drain valve.

2.6 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants: WH-1
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Woodford Manufacturing Company.
 - g. Zurn Plumbing Products Group; Light Commercial Operation.
 - 2. Standard: ASME A112.21.3M for concealed outlet, self-draining wall hydrants.

- 3. Pressure Rating: 125 psig (860 kPa).
- 4. Operation: Loose key.
- 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 6. Inlet: NPS 3/4
- 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 8. Box: Deep, flush mounting with cover.
- 9. Box and Cover Finish: Polished nickel bronze.
- 10. Outlet: Exposed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 11. Nozzle and Wall-Plate Finish: Rough bronze.
- 12. Operating Keys(s): One with each wall hydrant.

2.7 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. PPP Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - g. Tyler Pipe; Wade Div.
 - h. Watts Drainage Products Inc.
 - i. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Metal bellows.
 - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.8 TRAP-SEAL PRIMER VALVES

- A. Supply-Type, Trap-Seal Primer Valves
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIFAB, Inc.
 - b. PPP Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
 - 2. Standard: ASSE 1018.
 - 3. Pressure Rating: 125 psig minimum.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 - 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 - 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- C. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
- D. Install balancing valves in locations where they can easily be adjusted.
- E. Install thermostatic mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- F. Install trap-seal primer valves with valve outlet piping pitched down toward drain trap a minimum of 1/8 inch per foot (1 percent) and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- G. Install water hammer arrestors on all fixture groups of 3 or more fixtures. Water hammer arrestors to be sized according to P.D.I. Standard, see Table.

P.D.I. SYMBOL	А	В	С	D	Е	F
FIXTURE UNIT RATING	1-11	12-32	33-60	61-113	114-154	155-330

- H. Placement of arrestors on fixture branch line up to 20 feet in length should be between the last two fixtures. On fixture branch line over 20 feet in length two arrestors should be used with the second arrestor placed at the approximate midpoint of the line. The total sum of the fixture unit ratings of the water hammer arrestor should be equal to or greater than the total fixture unit of the branch line.
- I. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- 3.3 FIELD QUALITY CONTROL
 - A. Perform the following tests and prepare test reports:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
 - B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.4 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION

SECTION 22 1316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following for soil, waste, and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 - 1. Soil, Waste, Vent and Condensate Piping: 10-foot head of water.

1.4 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Field quality-control inspection and test reports.
- 1.5 QUALITY ASSURANCE
 - A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 - B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.
- 2.2 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS
 - A. Pipe and Fittings: ASTM A 888 or CISPI 301.

- B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - 1. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.

2.3 ABS PIPE AND FITTINGS

- A. Solid-Wall ABS Pipe: ASTM D 2661, Schedule 40.
- B. ABS Socket Fittings: ASTM D 2661, made to ASTM D 3311, drain, waste, and vent patterns.
- C. Solvent Cement and Adhesive Primer:
 - 1. Use ABS solvent cement that has a VOC content of 325 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
 - 1. PVC Socket Fittings: ASTM D 2665, socket type, made to ASTM D 3311, drain, waste, and vent patterns.
- B. Solvent Cement and Adhesive Primer:
 - 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

- A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4" and smaller shall be the following:
 1. Hubless cast-iron soil pipe and fittings standard, shielded, stainless-steel couplings; and hubless-coupling joints.
- C. Aboveground, soil and waste piping NPS 6" and larger shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings standard, shielded, stainless-steel couplings; and hubless-coupling joints.
- D. Aboveground, vent piping NPS 4" and smaller shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings; standard, stainless-steel couplings; and hublesscoupling joints.

- E. Aboveground, vent piping NPS 6" and larger shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
- F. Underground, soil, waste, and vent piping NPS 4" and smaller shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings; stainless-steel couplings; and hubless-coupling joints.
 - 2. ABS-DWV Schedule 40 plastic soil pipe; ABS-DWV Schedule 40 plastic socket fittings; and solvent cement joints.
 - 3. PVC-DWV Schedule 40 plastic soil pipe; PVC-DWV Schedule 40 plastic socket fittings; and solvent cement joints.
- G. Underground, soil and waste piping NPS 6" shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings; stainless-steel couplings; and hubless-coupling joints.
 - 2. PVC-DWV Schedule 40 plastic soil pipe; PVC-DWV Schedule 40 plastic socket fittings; and solvent cement joints.
- H. HVAC Condensate Drain Piping Above Grade: Use the following:
 - 1. 1/2 to 4 Inches: Hard copper tube, Type L; wrought-copper or cast-copper-alloy DWV fittings, solder joints with alloy Sn95 solder.

3.3 PIPING INSTALLATION

- A. Sanitary sewer piping outside the building is specified in Division 33 Section "Facility Sanitary Sewers."
- B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- C. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- D. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
- E. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
- F. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."
- G. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.
- H. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

- I. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- K. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Sanitary Drain: 1/4 inch per foot (2 percent) for piping 3 inches and smaller; 1/8 inch per foot (1 percent) for piping 4 inches and larger.
 - 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- L. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.
- M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
- C. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-freealloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Install individual, straight, horizontal piping runs according to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - 3. Base of Vertical Piping: MSS Type 52, spring hangers.

- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6: 60 inches with 3/4-inch rod.
 - 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.

3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.8 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION

SECTION 22 1319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Miscellaneous sanitary drainage piping specialties.
 - 4. Flashing materials.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. HDPE: High-density polyethylene plastic.
- C. PE: Polyethylene plastic.
- D. PP: Polypropylene plastic.
- E. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Floor sinks.
 - 4. Miscellaneous sanitary drainage piping specialties.

1.5 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.6 COORDINATION

A. Coordinate size and location of roof penetrations prior to installation.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Available Manufactures:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
 - g. Josam Company; Blucher-Josam Div.
- B. Floor Cleanouts FCO.
 - 1. Standard: ASME A112.36.2M cleanout.
 - 2. Size: Same as connected branch. Refer to Floor Plan for pipe size.
 - 3. Closure: Brass plug with straight threads and gasket or brass plug with tapered threads.
 - 4. Adjustable Housing Material: Cast iron.
 - 5. Frame and Cover Material and Finish: Carpeted Floors: Provide carpet flange. Uncarpeted Floors; Provide polished bronze top.
 - 6. Frame and Cover Shape: Round.
 - 7. Top Loading Classification: Medium duty.
- C. Wall Cleanouts WCO:
 - 1. Standard: ASME A112.36.2M. Include wall access.
 - 2. Size: Same as connected drainage piping. Refer to Floor Plan for pipe size.
 - 3. Body: As required to match connected piping.
 - 4. Closure: Brass plug.
 - 5. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
- D. 2-Way Grade Cleanout 2WGCO.
 - 1. Standard: ASME A112.36.2M cleanout.
 - 2. Size: Same as connected branch. Refer to Floor Plan for pipe size.
 - 3. Closure: Brass plug with straight threads and gasket or Brass plug with tapered threads.
 - 4. Adjustable Housing Material: Cast iron
 - 5. Frame and Cover Material and Finish: Nickel brass
 - 6. Frame and Cover Shape: Round
 - 7. Top Loading Classification: Heavy Duty.
- E. Grade Cleanout GCO:
 - 1. Standard: ASME A112.36.2M cleanout.
 - 2. Size: Same as connected branch. Refer to Floor Plan for pipe size.
 - 3. Closure: Brass plug with straight threads and gasket or Brass plug with tapered threads.
 - 4. Adjustable Housing Material: Cast iron
 - 5. Frame and Cover Material and Finish: Nickel bronze top.
 - 6. Frame and Cover Shape: Round
 - 7. Top Loading Classification: Heavy Duty.

2.2 FLOOR DRAINS AND FLOOR SINKS

- A. Available Manufactures:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
- B. Floor Drains Type FD:
 - 1. Standard: ASME A112.6.3
 - 2. Pattern Floor drain.
 - 3. Body Material Cast Iron.
 - 4. Seepage Flange: Required.
 - 5. Anchor Flange: Required.
 - 6. Clamping Device: Required.
 - 7. Outlet: Bottom. Refer to Floor Plan for pipe size.
 - 8. Top or Strainer Material: Nickel bronze.
 - 9. Top of Body and Strainer Finish: Nickel bronze.
 - 10. Top Shape: Round.
 - 11. Dimensions of Top or Strainer: 6-inch.
 - 12. Top Loading Classification: Medium duty.
 - 13. Trap Material: Cast iron.
 - 14. Trap Pattern: Standard P-trap.
 - 15. Trap Features: Trap-seal primer valve drain connection.

2.3 ROOF FLASHING ASSEMBLIES

- A. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 12 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - 1. Open-Top Vent Cap: Without cap.
 - 2. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - 3. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- B. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.

5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

2.5 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 - 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
 - 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 135 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

- G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- H. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- I. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- J. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- K. Install wood-blocking reinforcement for wall-mounting-type specialties.
- L. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.
- M. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."

- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.
- 3.4 FIELD QUALITY CONTROL
 - A. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION

SECTION 22 3300 - ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following electric water heaters:
 - 1. Commercial storage electric water heaters.
 - 2. Expansion tanks.
 - 3. Water heater accessories.

1.3 SUBMITTALS

- A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Product Certificates: For each type of commercial water heater signed by product manufacturer.
- D. Manufacturer Seismic Qualification Certification: Submit certification that commercial water heaters, accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Source quality-control test reports.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For electric water heaters to include in emergency, operation, and maintenance manuals.

H. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain same type of electric water heaters through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of electric water heaters and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004.
- E. ASME Compliance: Where indicated, fabricate and label commercial water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- F. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," for all components that will be in contact with potable water.
- G. UL Compliant.
- 1.5 COORDINATION
 - A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.
- 1.6 WARRANTY
 - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Period(s): From date of Substantial Completion:
 - a. Commercial Electric Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Controls and Other Components: Five years.
 - b. Expansion Tanks: One year.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 COMMERCIAL ELECTRIC WATER HEATERS

- A. Description: Comply with UL 174 for household, storage electric water heaters.
 - 1. Manufacturers:
 - a. American Water Heater Company.
 - b. Bradford White Corporation.
 - c. Lochinvar Corporation.
 - d. Rheem Water Heater Div.; Rheem Manufacturing Company.
 - e. Ruud Water Heater Div.; Rheem Manufacturing Company.
 - f. Smith, A. O. Water Products Company.
 - g. State Industries, Inc.
 - 2. Storage-Tank Construction: Steel, vertical arrangement.
 - a. Tappings: ASME B1.20.1 pipe thread.
 - b. Pressure Rating: 150 psig.
 - c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.
 - 3. Factory-Installed Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Dip Tube: Provide unless cold-water inlet is near bottom of tank.
 - c. Drain Valve: ASSE 1005.
 - d. Insulation: Comply with ASHRAE/IESNA 90.1-2004.
 - e. Jacket: Steel with enameled finish.
 - f. Heat Trap Fittings: Inlet type in cold-water inlet and outlet type in hot-water outlet.
 - g. Heating Elements: Electric, screw-in immersion type; wired for NON-simultaneous operation, unless otherwise indicated.
 - h. Temperature Control: Adjustable thermostat for each element.
 - i. Safety Control: High-temperature-limit cutoff device or system.
 - j. Relief Valve: ASME rated and stamped and complying with ASME PTC 25.3 for combination temperature and pressure relief valves. Include relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.
 - 4. Capacity and Characteristics: Refer to Drawings.

2.3 EXPANSION TANKS

- A. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - 1. Manufacturers:
 - a. AMTROL Inc.
 - b. Armstrong Pumps, Inc.

- c. Smith, A. O.; Aqua-Air Div.
- d. State Industries, Inc.
- e. Taco, Inc.
- f. Watts Regulator Co.
- g. Wessels Co.
- 2. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1, pipe thread.
 - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
- 3. Capacity and Characteristics: Refer to Drawings.

2.4 WATER HEATER ACCESSORIES

- A. Combination Temperature and Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
- B. Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include pressure setting less than water heater working-pressure rating.
- C. Water Heater Mounting Brackets: Water heater manufacturer's factory-fabricated steel bracket for wall mounting and capable of supporting water heater and water.
- D. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of water heater and include drain outlet not less than NPS 3/4.

2.5 SOURCE QUALITY CONTROL

- A. Hydrostatically test water heater storage tanks before shipment to minimum of one and one-half times pressure rating.
- B. Prepare test reports.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

- A. Install commercial water heaters on concrete bases.
 - 1. Exception: Omit concrete bases for commercial water heaters if installation on stand, bracket, suspended platform, or direct on floor is indicated.
 - 2. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Install water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

- C. Install seismic restraints for light-commercial and commercial water heaters. Anchor to substrate.
- D. Install combination temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic water piping in continuous downward pitch, and discharge by positive air gap as indicated on Drawings.
- E. Install combination temperature and pressure relief valves in water piping for water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- F. Install thermometer on outlet piping of water heaters. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.
- G. Assemble and install inlet and outlet piping manifold kits for multiple water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each water heater. Include shutoff valve, thermometer in each water heater inlet and outlet, and throttling valve in each water heater outlet. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves and to Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.
- H. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.
- I. Fill water heaters with water.
- J. Charge expansion tanks with air as required.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial and instantaneous electric water heaters. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 22 4000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes plumbing fixtures and trim, fittings, and accessories, appliances, appurtenances, equipment, and supports associated with plumbing fixtures.

1.3 SUBMITTALS

- A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
- D. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for plumbing fixtures for people with disabilities.
- D. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

1.5 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
 - 3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed.
 - 4. Flushometer Tank, Repair Kits: Equal to 5 percent of amount of each type installed, but no fewer than [2] of each type.
 - 5. Water-Closet Tank, Repair Kits: Equal to 5 percent of amount of each type installed.
 - 6. Toilet Seats: Equal to 5 percent of amount of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products in each category, by one of the following listed for that category:
 - 1. Water Closets and Urinals:
 - a. American Standard, Inc.
 - b. Crane Plumbing/Fiat Products.
 - c. Kohler Co.
 - d. Sloan Valve Co.
 - 2. Lavatories:
 - a. American Standard, Inc.
 - b. Crane Plumbing/Fiat Products.
 - c. Kohler Co.
 - 3. Sinks:

4.

- a. Elkay Manufacturing Co.
- b. Just Manufacturing Co.
- c. Kohler Co.
- d. Moen Group; Stanadyne Corp.
- Mop Sinks: Security Type:
 - a. Acorn Engineering Co.
 - b. Just Manufacturing Co.
 - c. Metcraft.
 - d. Willoughby.
- 5. Drinking Fountains:
 - a. Oasis
 - b. EBCO Manufacturing Co.
 - c. Elkay Manufacturing Co.
 - d. Halsey Taylor; A Household International Co.
 - e. Haws Drinking Faucet Co.
 - f. Sunroc Corp.
 - g. Western Drinking Fountains; Sunroc Corp.

- 6. Toilet Seats: Non-security Type:
 - a. Bemis Mfg. Co.
 - b. Beneke Div.; Sanderson Plumbing Products, Inc.
 - c. Church Seat Co.
 - d. Kohler Co.
 - e. Olsonite Corp.
 - f. Sperzel Industries, Inc.
- 7. Flush Valves:
 - a. Delany Co.
 - b. Sloan Valve Co.
 - c. Zurn Co.
- 8. Commercial / Residential Cast-Brass and Cast-Brass Underbody Faucets:
 - a. Chicago Faucet Co.
 - b. Elkay Manufacturing Co.
 - c. Just Manufacturing Co.
 - d. Kohler Co.
 - e. Moen Group; Stanadyne Corp.
 - f. T & S Brass.
- 9. Supports:
 - a. Josam Co.
 - b. Mifab.
 - c. Smith (Jay R.) Mfg. Co.
 - d. Wade Div.; Tyler Pipe.
 - e. Watts, Inc.
 - f. Zurn Industries, Inc.; Hydromechanics Div.

2.2 PLUMBING FIXTURES, GENERAL

- A. Provide plumbing fixtures and trim, fittings, other components, and supports as specified in "Plumbing Fixture Data Sheets" at the end of Part 3 of this Section.
- 2.3 FITTINGS, EXCEPT FAUCETS
 - A. Fittings General: Unless otherwise specified, provide fittings fabricated of brass, with a polished chrome plated finish.
 - B. Lavatory Supplies and Stops, Type 1: Loose-key brass angle stop, having 1/2-inch NPS inlet with wall flange and 3/8-inch by 12-inch flexible tubing riser outlet. No plastic stem angle stops are acceptable.
 - C. Lavatory Traps, Type 1: Cast-brass, 1-1/4-inch by 1-1/2-inch NPS adjustable P-trap with cleanout, 17-gage tubular waste to wall, and wall flange.
 - D. Sink Supplies and Stops, Type 1: Loose-key angle stop, having 1/2-inch NPS inlet with wall flange and 1/2-inch by 12-inch flexible tubing riser outlet.
 - E. Sink Traps, Type 1: Cast-brass, 1-1/2-inch NPS adjustable P-trap with cleanout, 17-gage tubular waste to wall, and wall flange.
 - F. Sink Continuous Wastes, Type 1: Polished chrome-plated, tubular brass, 1-1/2 inches, 17 gage, with brass nuts on slip inlets, and of configurations indicated.

- G. Supply and drain plumbing service fittings not listed above shall be as specified and as scheduled.
- H. Fittings installed concealed inside a plumbing fixture or within wall construction may be without chrome plate finish.
- I. Escutcheons: Wall flange with setscrew.
- J. Provide fittings specified as part of a fixture description, in lieu of fitting requirements above.
- 2.4 TOILET SEATS
 - A. General: Provide toilet seats compatible with water closets, and of type, color, and features indicated.
 - B. Toilet Seats, Type 1: Heavy-duty, commercial/industrial type, elongated, open front, solid plastic, with check hinge.
- 2.5 PLUMBING FIXTURE SUPPORTS
 - A. Supports: ASME A112.6.1M, categories and types as required for wall-hanging fixtures specified, and wall reinforcement.
 - B. Support categories are:
 - 1. Carriers: Supports for wall-hanging water closets and fixtures supported from wall construction. Water closet carriers shall have an additional faceplate and coupling when used for wide pipe spaces. Provide tiling frame or setting gage with carriers for wall-hanging water closets.
 - 2. Chair Carriers: Supports with steel pipe uprights for wall-hanging fixtures. Urinal chair carriers shall have bearing plates.
 - 3. Chair Carriers, Heavy Duty: Supports with rectangular steel uprights for wall-hanging fixtures.
 - 4. Reinforcement: 2-inch by 4-inch wood blocking between studs or 1/4-inch by 6-inch steel plates attached to studs, in wall construction, to secure floor-mounted and special fixtures to wall.
 - C. Support Types: Provide support of category specified, of type having features required to match fixture.
 - D. Provide supports specified as part of fixture description, in lieu of category and type requirements above.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install floor-mounting, back-outlet water closets attached to building floor substrate and wall bracket and onto waste fitting seals.
- G. Install counter-mounting fixtures in and attached to casework.
- H. Install fixtures level and plumb according to roughing-in drawings.
- I. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 - 1. Exception: Use ball valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- J. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- K. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- L. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- M. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.
- N. Install toilet seats on water closets.
- O. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- P. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

- Q. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- R. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- S. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- T. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- U. Set bathtubs, shower receptors and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."
- V. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Operate and adjust disposers, hot-water dispensers, and controls. Replace damaged and malfunctioning units and controls.

- C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- D. Replace washers and seals of leaking and dripping faucets and stops.

3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
- B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 **PROTECTION**

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.
- 3.8 FIXTURE SCHEDULE
 - A. Provide plumbing fixtures as scheduled on the following "Data Sheets." Each Data Sheet begins with a new page.

WATER CLOSET DATA SHEET

Water Closet, Type WC-1: Crane, Placidus Model # 3446

Material: Vitreous China

Bowl Type: Elongated

<u>Mounting and Outlet</u>: Wall hung, wall outlet, top spud.

<u>Rim Height</u>: Normal use: 14 inches.

Consumption: 1.6 GPF

Color: White

<u>Fittings and Accessories</u>: Provide the following compatible components:

Toilet Seat: Type 1

Flushometer: Sloan Royal 111-1.6

Support: J.R. Smith # 0230Y

Water Closet, Type WC-2:	Crane, Placidus Model 3446
Material: Vitreous C	hina
Bowl Type: Elongated	
Mounting and Outlet:	Wall hung, wall outlet, top spud.
Rim Height: Normal use	e: 17 inches
Consumption: 1.6 GPH	
Color: White	
Fittings and Accessories:	Provide the following compatible components:
Toilet Seat:	Type 1
Flushometer:	Sloan Royal 113-1.6
<u>Support</u> :	J.R. Smith # 0230Y
URINAL DATA SHEET	
Urinal, Type UR-1: Sloan W	aterfree, WES-5000
Material: Vitreous cl	nina.
Urinal Type: Waterless	

Mounting and Outlet: Wall hanging, back outlet. (17".)

<u>Color</u>: White

Fittings and Accessories: Provide the following compatible components:

Support: Factory bracket.

LAVATORY DATA SHEET

La	vatories, Type L	<u>1</u> : Crane Galaxy/Cranada Model 1287V.			
	Material:	Vitreous China			
	Lavatory Type	: Self-rimming counter top			
	Dimensions:	20 x 17 inches			
	Mounting:	Counter top.			
	<u>Color</u> :	White			
Fittings and Accessories: Provide the following compatible components:					
	Supplies:	Lavatory Type 1			
	<u>Faucet</u> :	Chicago #2200-4E2805CP; single level, 4-3/4 inch spout, 4 inch centers, 0.5 gpm vandal resistant spray outlet, ceramic disc operating cartridges, temperature limit stop, volume control, cast brass cover plate.			
	Drain:	Grid Drain			
	<u>Trap</u> :	Lavatory Type 1; insulation, Truebro Handi Lav-Guard Model #102W & 105W, or approved equal.			
SINK DATA SHEET					
Sinks, Type S-1: Elkay, Model #LRAD2918					
	Material:	Stainless steel			
	Gage:	18			
	Sink Type:	Two compartment self rimming			
	Dimensions:	29 x 18 x 6-1/2 inches			
	Mounting:	Counter mounting.			

<u>Fittings and Accessories</u>: Provide the following compatible components:

Supplies: Sink Type 1

<u>Faucet</u>: Elkay #LKE4160; 8 inch swing spout, chrome, single handle, single hole, 2.2 GPM aerator.

Drain: (2) Strainer: #LK35

<u>Trap</u>: Sink Type 1 with continuous waste Type 1

PLUMBING FIXTURES

MOP BASIN DATA SHEET

Janitor Sink, Type MS-1: Fiat MSB2424

Material: Molded-stone

Dimensions: 24 x 24 x 10

Fittings and Accessories: Provide the following compatible components:

- Faucet: Chicago #540-LD-8979-WXF; vacuum breaker spout, 3/4" hose thread outlet, pail hook, 8 inch center, lever handle.
- Strainer: Fiat #1453-BB

Hose and Bracket: Fiat #832-AA

- Mop Rack: Fiat #889-CC
- Trap: Cast iron

WATER COOLER DATA SHEET

Water Coolers, Type EWC-1: Barrier-Free, Split-Level with two touch pads, Elkay EZSTL8C

Water Cooler Type: Wall hung. (34" to ADA)

Capacity: 8 GPH.

Cabinet Material: Stainless steel.

Color or Finish: Stainless steel.

Fittings and Accessories: Provide the following compatible components:

- <u>Supply</u>: Loose-key angle stop, having 1/2 inch inlet with wall flange, and 1/2 inch by 12 inch flexible tubing riser outlet.
- <u>Trap</u>: 1-1/2 inch, 17 gauge, chrome plated brass.

OUTLET BOX DATA SHEET

Clothes Washer Boxes, Type OB-1: Guy Gray, BIM-875QTS.

Material: Steel.

Gage: 18 gage.

Shut-Off Type: Quarter turn.

Dimensions: 9 inch x 10 inch.

Mounting: Recessed wall-mounting.

END OF SECTION

DIVISION 23 - HEATING, VENTILATING AND AIR CONDITIONING

Pages

Section 23 0500	Common Work Results for HVAC	
Section 23 0513	Common Motor Requirements for HVAC Equipment	
Section 23 0519	Meters and Gages for HVAC	
Section 23 0548	Vibration Controls for HVAC Piping and Equipment	
Section 23 0553	Identification for HVAC Piping and Equipment	
Section 23 0700	HVAC Insulation.	
Section 23 0900	Instrumentation and Control for HVAC	
Section 23 0993	Sequence of Operation for HVAC Controls	
Section 23 2300	Refrigerant Piping	
Section 23 3113	Metal Ducts	
Section 23 3300	Air Duct Accessories	
Section 23 3423	HVAC Power Ventilators	
Section 23 3700	Air Outlets and Inlets	
Section 23 8126	Split-System Heat Pumps	
SECTION 23 0500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

- 1. Piping materials and installation instructions common to most piping systems.
- 2. Transition fittings.
- 3. Dielectric fittings.
- 4. Mechanical sleeve seals.
- 5. Sleeves.
- 6. Escutcheons.
- 7. Grout.
- 8. HVAC demolition.
- 9. Equipment installation requirements common to equipment sections.
- 10. Concrete bases.
- 11. Supports and anchorages.
- 12. Coordination drawings.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. PE: Polyethylene plastic.
 - 2. PVC: Polyvinyl chloride plastic.

- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Escutcheons.
 - 2. Supports and anchorages
 - 3. Coordination drawings

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

- D. Coordination Drawings: For ductwork and piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. All equipment.
 - 2. All piping.
 - 3. HVAC piping.
 - 4. HVAC ductwork.
 - 5. HVAC service clearances.
 - 6. Electrical equipment and conduit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
- 2.2 PIPE, TUBE, AND FITTINGS
 - A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
 - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.
- 2.3 JOINING MATERIALS
 - A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
 - B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
 - C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
 - D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
 - E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: CPVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
- C. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel. Include two for each sealing element.

3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.1. Finish: Polished chrome-plated.
- D. Split-Plate, Stamped-Steel Type: With concealed-rivet hinge, set screw or spring clips and chrome-plated finish.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following: 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated or Bare Piping at Wall and Floor Penetrations in Finished Spaces: Onepiece, cast-brass type with polished chrome-plated finish.
 - d. Insulated or Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - e. Insulated or Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - f. Insulated or Bare Piping in Equipment Rooms: One-piece, cast-brass type.
- M. Sleeves are not required for core-drilled holes.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

- 3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
- 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- 3.2 PIPING JOINT CONSTRUCTION
 - A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
 - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
 1. PVC Nonpressure Piping: Join according to ASTM D 2855.
- I. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- 3.3 PIPING CONNECTIONS
 - A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

END OF SECTION

SECTION 23 0513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.

- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION

SECTION 23 0519 - METERS AND GAGES FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermometers.
 - 2. Gages.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated; include performance curves.
- B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer's number, scale range, and location for each.
- C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Palmer Wahl Instruments Inc.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Die-cast aluminum, 7 inches long.
- C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 DUCT-TYPE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Miljoco Corp.
 - 2. Palmer Wahl Instruments Inc.
 - 3. Trerice, H. O. Co.
 - 4. Weiss Instruments, Inc.
- B. Case: Die-cast aluminum 7 inches long.
- C. Tube: Red or blue reading, organic filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Metal, for installation in mounting bracket and of length to suit installation.
- H. Mounting Bracket: Flanged fitting for attachment to duct and made to hold thermometer stem.
- I. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

PART 3 - EXECUTION

- 3.1 THERMOMETER APPLICATIONS
 - A. Install liquid-in-glass thermometers in the following locations:
 1. Outside-air, return-air, and mixed-air ducts as indicated on the drawings.
 - B. Provide the following temperature ranges for thermometers:
 - 1. Air Ducts: 30 to 240 deg F, with 2-degree scale divisions (Minus 1 to plus 115 deg C, with 1-degree scale divisions).

3.2 PRESSURE GAGE APPLICATIONS

A. Install pressure gages as required by the equipment supplier for service to condensing / heat pump units.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions so the meter is easily read from a standing position.
- B. Duct Thermometer Support Flanges: Install in wall of duct where duct thermometers are indicated. Attach to duct with one-side applied rivets.

3.4 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

3.5 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

END OF SECTION

SECTION 23 0548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:1. Spring hangers.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.

1.4 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: Reference the structural documents for wind speed.
 - 2. Building Classification Category: Reference the structural documents for building classification.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of component used.
- B. Welding certificates.
- C. Qualification Data: For professional engineer and testing agency.
- D. Operation and Maintenance Data: For air-mounting systems to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or a comparable product by one of the following:
 - 1. Ace Mountings Co., Inc.
 - 2. Amber/Booth Company, Inc.
 - 3. California Dynamics Corporation.
 - 4. Isolation Technology, Inc.
 - 5. Kinetics Noise Control.
 - 6. Mason Industries.
 - 7. Vibration Eliminator Co., Inc.
 - 8. Vibration Isolation.
 - 9. Vibration Mountings & Controls, Inc.
- C. Pads : Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene, rubber or hermetically sealed compressed fiberglass.
- D. Spring Isolators Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- E. Spring Hangers : Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- C. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ADJUSTING

- A. Adjust isolators after system is at operating weight.
- B. Adjust air-spring leveling mechanism.
- C. Adjust active height of spring isolators.
- 3.4 APPLICATIONS

EQUIPMENT

FAN COILS / HEAT PUMP INDOOR UNITS

ALL HANGING AIR HANDLERS

ALL HANGING EXHAUST FANS

ALL ROOF MOUNTED CONDENSING UNITS / HEAT PUMPS

VIBRATION ISOLATION TYPE

SPRING HANGERS

SPRING HANGERS

SPRING HANGERS

SPRING VIBRATION ISOLATORS

END OF SECTION

SECTION 23 0553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.
- 4. Duct labels.
- 5. Stencils.
- 6. Valve tags.
- 7. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Aluminum, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.3 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.

- C. Background Color: White.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.
- 3.3 PIPE LABEL INSTALLATION
 - A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Painting" or "High-Performance Coatings."
 - B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.

- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - Refrigerant Piping:
 - a. Background Color: White.
 - b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cooling/heating-air supply ducts.
 - 2. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 3. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION

1.

SECTION 23 0700 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

2.

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
 - Insulating cements.
 - 3. Adhesives.
 - 4. Mastics.
 - 5. Lagging adhesives.
 - 6. Sealants.
 - 7. Factory-applied jackets.
 - 8. Field-applied fabric-reinforcing mesh.
 - 9. Field-applied cloths.
 - 10. Field-applied jackets.
 - 11. Tapes.
 - 12. Securements.
 - 13. Corner angles.
- B. Related Sections:
 - 1. Division 22 Section "Plumbing Insulation."
 - 2. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.
 - 5. Detail field application for each equipment type.
- C. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.
- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.

- c. Johns Manville; 800 Series Spin-Glas.
- d. Knauf Insulation; Insulation Board.
- e. Manson Insulation Inc.; AK Board.
- f. Owens Corning; Fiberglas 700 Series.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000 Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F (10 to 427 deg C).
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-97.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-27/81-93.
 - c. Marathon Industries, Inc.; 290.
 - d. Mon-Eco Industries, Inc.; 22-30.
 - e. Vimasco Corporation; 760.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Cellular-Glass Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-96.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.

- 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; \$-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- G. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Speedline Vinyl Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.

- e. Mon-Eco Industries, Inc.; 55-40.
- f. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-30.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 - c. ITW TACC, Division of Illinois Tool Works; CB-25.
 - d. Marathon Industries, Inc.; 501.
 - e. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; Encacel.
 - b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
 - c. Marathon Industries, Inc.; 570.
 - d. Mon-Eco Industries, Inc.; 55-70.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms (2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F (Minus 29 to plus 93 deg C).
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.
 - d. Mon-Eco Industries, Inc.; 11-30.
 - e. Vimasco Corporation; 136.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over duct, equipment, and pipe insulation.
 - 3. Service Temperature Range: Minus 50 to plus 180 deg F (Minus 46 to plus 82 deg C).
 - 4. Color: White.

2.5 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.
 - 2. Joint Sealants for Polystyrene Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-70.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45/30-46.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 3. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 4. Permanently flexible, elastomeric sealant.
 - 5. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - 6. Color: White or gray.
 - 7. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.

- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C). 4.
- 5. Color: Aluminum.
- For indoor applications, use sealants that have a VOC content of 250 g/L or less when 6. calculated according to 40 CFR 59. Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, available products that may be 1. incorporated into the Work include, but are not limited to, the following: Childers Products, Division of ITW; CP-76. a.
 - Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant. 3.
 - Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C). 4.
 - 5. Color: White.
 - For indoor applications, use sealants that have a VOC content of 250 g/L or less when 6. calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- Insulation system schedules indicate factory-applied jackets on various applications. When A. factory-applied jackets are indicated, comply with the following:
 - White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; ASJ: 1. complying with ASTM C 1136, Type I.
 - ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a 2. removable protective strip; complying with ASTM C 1136, Type I.
 - Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; FSK Jacket: 3. complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED JACKETS

- Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated. A.
- Β. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - Products: Subject to compliance with requirements, available products that may be 1. incorporated into the Work include, but are not limited to, the following:
 - Johns Manville; Zeston. a.
 - P.I.C. Plastics, Inc.; FG Series. b.
 - Proto PVC Corporation; LoSmoke. c.
 - Speedline Corporation; SmokeSafe. d.
 - Adhesive: As recommended by jacket material manufacturer. 2.
 - 3. Color: Color as selected by Architect.

- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- 5. Factory-fabricated tank heads and tank side panels.
- D. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heatbonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
 - 3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heatbonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches (50 mm).
 - 2. Thickness: 3.7 mils (0.093 mm).
 - 3. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.9 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
 - Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
 - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - b. Spindle: Stainless steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
- b. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
- c. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
- 2.10 CORNER ANGLES
 - A. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.
 - B. Stainless-Steel Corner Angles: 0.024 inch (0.61 mm) thick, minimum 1 by 1 inch (25 by 25 mm), stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.

- 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.

- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.
- E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
 - 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
 - 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

- 2. Install lap or joint strips with same material as jacket.
- 3. Secure jacket to insulation with manufacturer's recommended adhesive.
- 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.10 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified and specified in Division 09 painting Sections.
- 3.11 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to a number of location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Architect, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to a number of location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Outdoor, concealed supply and return.
 - 4. Outdoor, exposed supply and return.

- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.13 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following: Minoral Eiber Planket: $1 \frac{1}{2}$ inches (38 mm) thick and 0.75 lb/cm ft (12 kg/cm)
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 1. No insulation.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
 - 2. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- D. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- E. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- F. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- G. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.

3.14 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.15 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - All Pipe Sizes: Insulation shall be the following:
 - a. Cellular Glass: 1 inch (25 mm) thick.
- B. Refrigerant Suction and Hot-Gas Piping:

1.

1.

1.

- 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- C. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch (19 mm) thick.

3.16 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.
- B. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4-inch thick.

3.17 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed: 1. None.
- D. Ducts and Plenums, Exposed:1. Aluminum, Smooth: 0.016-inch thick.
- E. Equipment, Concealed:1. None.
- F. Piping, Concealed: 1. None.
- G. Piping, Exposed:
 1. PVC, Color-Coded by System: 20 mils (0.5 mm) thick.

3.18 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed: 1. None.
- D. Piping, Exposed:1. Aluminum, Smooth: 0.016-inch thick.

END OF SECTION

SECTION 23 0900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION

- A. Furnish and install a programmable thermostats for each unit.
- B. The Instrumentation and Control for HVAC subcontractor shall furnish and install the necessary wiring and conduit for the temperature sensors and control components furnished with the rooftop equipment. The Contractor shall be responsible for control of all HVAC equipment at the site, even if the controls are furnished in a different specification section.
- C. The Drawings and Specifications are not intended to show all details. Secure satisfactory information before submitting the proposal and include in the proposal a sum sufficient to cover all items of labor and material required for the complete installation of the devices and system described.
- D. All Work performed under this Section of the Specification will comply with all codes, laws and governing bodies. If the Drawings and/or Specifications are in conflict with governing codes, submit a proposal with appropriate modifications to the project to meet code restrictions. If this Specification and associated Drawings exceed governing code requirements, this Specification will govern.
- E. Furnish all control valves and automatic dampers indicated on the Drawings. Installation of these components will be by the Mechanical Contractor.
- F. Furnish and install all actuators including necessary linkages, wire, conduit and power wiring.
- G. Provide all necessary power and control wiring not shown to be provided on the Electrical Plans.
- H. The Instrumentation and Control for HVAC Subcontractor shall be responsible to provide and install a dedicated phone line up through the end of the warranty period.
- I. Coordinate and cooperate with the facility monitoring system as described in Division 23 Section "Facility Monitoring System."

1.3 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, software description, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 - 1. Each control device labeled with setting or adjustable range of control.
 - 2. Each product marked with label used in Shop Drawings.

- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Schematic flow diagrams showing fans, coils, dampers, valves, and control devices.
 - 2. Wiring Diagrams: Power, signal, and control wiring. Differentiate between manufacturer-installed and field-installed wiring. Coordinate with controlled equipment wiring diagrams.
 - 3. Written description of sequence of operation with equipment identified with same label as indicated in the Plans.
 - 4. Schedule of dampers including size, leakage, and flow characteristics.
 - 5. Schedule of valves including leakage and flow characteristics.
- C. Maintenance Data: For systems to include in maintenance manuals specified in Division 01. Include the following:
 - 1. Interconnection wiring diagrams with identified and numbered system components and devices.
 - 2. Keyboard illustrations and step-by-step procedures indexed for each operator function.
 - 3. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 - 4. Calibration records and list of set points.
- D. Project Record Documents: Record actual locations of control components, including control units, thermostats, and sensors.
- E. Acceptance Statement: Signed by Owner stating that training has been completed and operation and maintenance information has been received.

1.4 QUALITY ASSURANCE

- A. The equipment and software proposed by the supplier shall be currently in manufacture. No custom products shall be allowed unless required by the specification. All products shall be supported by the manufacturer for a minimum of five (5) years, including spare parts, board repairs and software revisions.
- B. Installer Qualifications: An experienced installer who is an authorized representative of the automatic control system manufacturer for both installation and maintenance of units required for this Project.
- C. Manufacturer Qualifications: A firm experienced in manufacturing automatic temperature-control systems similar to those indicated for this Project and with a record of successful in-service performance.

1.5 AGENCY AND CODE APPROVALS

A. All products shall be labeled with the appropriate approval markings. System installation shall comply with NFPA, NEMA, local and national codes.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to unit manufacturer.

1.7 COORDINATION

A. Coordinate location of thermostats and other exposed control sensors with the plans and room details and the architect/engineer and owner before installation.

1.8 WARRANTY AND WARRANTY SERVICE

- A. All components, parts and assemblies shall be guaranteed against defects in material and workmanship for a period of two years after completion. Expressed warranties are conditionally based on the requirement that the items covered within the guarantee are used and maintained in accordance with the manufacturer's recommendations. Guarantee commences at the time of project completion and continues for the previously indicated duration. The date of completion of the work is the date when construction is sufficiently complete in accordance with the Contract Documents, so that the Owner may engage the system for the use in which it is intended.
- B. Normal maintenance of the system or adjustments of components are not to be considered a part of the guarantee.
- C. General: Provide all services, materials and equipment necessary for the successful operation of the entire control system for a period of one year after substantial completion. Minimize impact of building operations when performing warranty service and nonscheduled work. Response time in the event of a control failure shall be no more than four hours onsite and one-half hour call back.

PART 2 - PRODUCTS

2.1 CONTROL EQUIPMENT AND DEVICES

- A. The control system shall include all necessary and specified control equipment properly installed in accordance with specifications and drawings. No equipment or devices shall be mounted more than three (3) feet from bottom of equipment to top of the ceiling grid. Relocation of equipment or devices to meet this requirement shall not have a cost impact to the Owner. All panels shall be kept clear and accessible. The control system shall include the automatic control of the following:
 - 1. Auxiliary Control Devices:
 - a. Acceptable actuator manufacturer for all motorized dampers and valves shall be Belimo.
 - 2. Dampers:
 - a. The Building Automation System supplier shall provide all automatic control dampers not specified to be supplied integral to the HVAC equipment.
 - b. Dampers shall be low leakage or high velocity low leakage as specified in the sequence of operations. All proportional dampers shall be opposed blade type. Two position dampers may be opposed or parallel blade type.
 - c. Damper frames and blades shall be galvanized steel and a minimum of 16 gauge. Blade width shall not exceed 8 inches. Dampers and seals shall be suitable for temperature ranges of -50 to 250 deg F. Damper linkage hardware shall be constructed of aluminum or corrosion resistant zinc and nickel plate steel.

- d. Standard Low Leakage Dampers: Standard low leakage dampers shall be provided to conserve energy. Dampers shall be equipped with neoprene edge seals and compressible metal jamb seals. Leakage shall not exceed 10 CFM/Sq.Ft. at 4" W.G. differential. Standard Low Leakage dampers shall be Ruskin, Model CD36 or equal.
- e. Damper manufacturer shall supply alignment plates for all multi-section dampers.
- 3. Electric Actuator shall be used unless otherwise specified, provide as follows:
 - a. UL Listed Standard 873 and Canadian Standards association Class 481302 shall certify Actuators.
 - b. NEMA 2 rated actuator enclosures are. Use additional weather shield to protect actuator when mounted outside.
 - c. ISO9001 certification is required of Actuator Manufacturer process.
 - d. Two-year unconditional warranty from date of occupancy.
 - e. Mechanical spring shall be provided when specified. Capacitors or other nonmechanical forms of fail-safe are not acceptable. The actuator mounting arrangement and spring return feature shall permit normally open or normally closed positions of the controlled device as required.
 - f. Position indicator device shall be installed and made visible to the exposed side of the Actuator. For damper short shaft mounting, a separate indicator shall be provided to the exposed side of the Actuator.
 - g. Overload Protection: Actuators shall provide protection against actuator burnout by using an internal current limiting circuit or digital motor rotation sensing circuit. Circuit shall insure that actuators cannot burn out due to stalled damper or mechanical and electrical paralleling. End switches to deactivate the actuator at the end of rotation or use of magnetic clutches are not acceptable.
 - h. A push button gearbox release shall be provided for all non-spring actuators.
 - i. Modulating actuators shall be 24Vac and consume 10VA power or less.
- 4. Damper Actuators:
 - a. Electric damper actuators shall be direct shaft mounted and use a V-bolt and toothed V-clamp causing a cold weld effect for positive gripping. Single bolt or set-screw type fasteners are not acceptable.
 - b. Provide only one actuator per damper section. Size damper sections based on actuator manufacturer's recommendations for face velocity, differential pressure and damper type.
 - c. Multi-section dampers with electric actuators shall be arranged so that each damper section operates individually. One electronic actuator shall be direct shaft mounted per damper section. No connecting rods or jack-shafts shall be needed.
 - d. Small outside air and return air economizer dampers may be mechanically linked together if one actuator has sufficient torque to drive both.

2.2 MANUFACTURER

- A. Temperature Control Systems:
 - 1. System:
 - a. Carrier Controls
 - b. Trane Controls
 - c. Honeywell
 - d. Johnson Controls

2.3 PROGRAMMABLE THERMOSTAT

- A. Seven-day Commercial Programmable Thermostat is a wall mounted, low voltage thermostat that maintains room temperature by controlling the operation of an HVAC (heating, cooling and ventilation) system. Separate heating and cooling set points and auto-changeover capability allow occupied and unoccupied programming for energy savings.
- B. Features/Benefits:
 - 1. Programmable thermostat shall provides the following features and benefits:
 - a. proportional integral control of heating and cooling stages
 - b. compressor lockout sensing for heat pumps
 - c. remote sensing and averaging
 - d. remote occupancy override from remote room sensor
 - e. compatible with heat pump operation
 - f. keypad lockout security with up to 6 hours of occupancy override
 - g. heating and cooling set points and lockout
 - h. 4 time/temperature settings can be programmed every 24 hours
 - i. programs stored for 7 days
 - j. expanded backlit display features mode and equipment status, occupancy and time of day
 - 2. The thermostat allows up to 4 time/temperature settings to be programmed in 24-hour intervals. The thermostat stores schedules for 7 independent days and batteries are not required. In the event of power interruption, the internal memory stores comfort schedules for an unlimited time. The clock will continue to run for 72 hours.
 - 3. Thermostat capable of constant fan operation for 24 hours during continuous occupancy. During this time, the thermostat can be programmed and set points can be adjusted using occupied and unoccupied schedules. Additionally, the thermostat is capable of displaying outside or supply air temperature using the remote sensor input.
- C. Appearance: Plastic Material; Taupe Color; Textured Cover Weight: Approximately 1 lb.
- D. Power Requirement:
 - 1. 24 vac 50/60 Hz @ 5 va.
 - 2. No batteries are required.
- E. Environmental Requirements:
 - 1. Temperature:
 - a. Operating: 32 to $104 \text{ F} (0^{\circ} \text{ to } 40 \text{ C})$
 - b. Non-Operating: -40 to 135 F (-40 to 57 C)
 - 2. Humidity: 0 to 95% RH, Non-Condensing
- F. Agency Approvals:
 - 1. FCC Part 15, Subpart J
- G. Electrical Characteristics:
 - 1. Inputs: 24 VAC
 - 2. Outputs:
 - a. Minimum Load = 1000 W
 - b. Maximum Load = 1.5 A, 50% pf Inductive
 - c. Nominal Load Capacity = 1.5 Amps

- H. Temperature Control:
 - 1. The thermostat uses proportional integral calculation to determine the number of stages required for heating or cooling to provide accurate temperature control.
- I. Remote sensing thermostat:
 - 1. Provide remote bulb sensing for thermostats called out to be in return air ducts with the same features as the above thermostat but with a remote sensing device.

PART 3 - EXECUTION

3.1 CONTRACTOR RESPONSIBILITIES

A. Installation of the Control System shall be performed by the Temperature Controls Contractor. The Temperature Controls Contractor shall certify all work as proper and complete and shall reflect actual installation on the project record documentation as specified herein. Under no circumstances shall the design, scheduling, coordination, programming, training, and warranty requirements for the project be delegated to a Subcontractor.

3.2 WIRING INSTALLATION PRACTICES

- A. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer's recommendations.
- B. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
- C. Conduit, in finished areas, will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception; metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.
- D. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.
- E. Wires are to be kept a minimum of 3 inches from hot water piping.
- F. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.
- G. Wire will not be allowed to run across telephone equipment areas. All control tubing or wiring in concrete walls or floors shall run in rigid conduit.
- H. Junction box covers will be marked to indicate that they are a part of the EMCS system.
- I. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.

- J. Control system power shall be obtained from dedicated circuits on the nearest available 120 V panel and clearly labeled. Power for any temperature equipment that is controlling equipment that operates under emergency power shall be obtained from emergency power panels.
- K. All power wiring for the EMCS equipment shall be done with a dedicated earth ground by means of wire media only, originating at the power service source earth ground.
- L. The 120 VAC power wiring to each Level 1 controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.

3.3 DEVICE MOUNTING AND INSTALLATION PRACTICES

- A. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.
- B. Dampers will be furnished by the Temperature Controls Contractor and installed by the Sheet Metal Contractor.
- C. The Sheet Metal Contractor shall provide necessary blank-off plates (safing) required to install dampers that are smaller than duct size.
- D. The Sheet Metal Contractor shall assemble multiple section automatic dampers, furnished by the Temperature Controls Contractor, with required interconnecting linkages and extend required number of shafts through duct for external mounting of damper actuators.
- E. The Sheet Metal Contractor shall provide access doors or other approved means of access through ducts for service to control equipment.
- F. The Sheet Metal Contractor shall provide necessary sheet metal baffle plates to eliminate stratification while providing air volumes specified. Locate baffles by experimentation and affix and seal permanently in place only after stratification has been eliminated.
- G. The Mechanical Contractor shall provide all necessary valved pressure taps, water, drain and overflow connections and piping.
- H. The Mechanical Contractor shall provide all necessary piping connections required for flow devices, valve position indicators, etc.
- I. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.
- J. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150 percent of the rated coil voltage.
- K. Verify location of exposed control sensors with plans and room details and the architect/engineer and owner prior to installation. In order to comply with ADA, room temperature sensors or room thermostats shall be located 48 inches above the floor.

3.4 SOFTWARE INSTALLATION

A. Provide all labor necessary to install, initialize, start-up and debug all systems

3.5 CLEANUP

A. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract. Clean the exposed surfaces of tubing, hangers, and other exposed metal of grease, plaster, or other foreign materials.

3.6 IDENTIFICATION

A. Identify all control wires with labeling tape or sleeves using either words, letters, or numbers that can be exactly cross-referenced with as-built drawings.

3.7 TRAINING

- A. Provide 4 hours of operator training to familiarize the operating staff with the system. Training shall include information regarding the system hardware and operating software.
- B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain control systems and components.
 - 1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
 - 2. Provide operator training on data display, alarm and status descriptors, requesting data, executing commands, calibrating and adjusting devices, resetting default values, and requesting logs.
 - 3. Review data in maintenance manuals.
 - 4. Schedule training with Owner, through Architect-Engineer, with at least seven days' advance notice.

3.8 ACCEPTANCE TESTING

- A. Sequence Verification:
 - 1. The Contractor shall notify the Owner's representative and the Engineer of systems which perform all specified sequences. The Contractor shall verify all sequences of operation and place the system into warranty acceptance test.

3.9 FIELD QUALITY CONTROL

- A. Engage a factory-authorized service representative to perform startup service.
- B. Replace damaged or malfunctioning controls and equipment.
 - 1. Start, test, and adjust control systems.
 - 2. Demonstrate compliance with requirements, including calibration and testing, and control sequences.
 - 3. Adjust, calibrate, and fine tune circuits and equipment to achieve sequence of operation specified.

3.10 ON-SITE ASSISTANCE

A. Occupancy Adjustments: Within one year of date of Substantial Completion, provide up to three Project site visits, when requested by Owner, to adjust and calibrate components and to assist Owner's personnel in making program changes and in adjusting sensors and controls to suit actual conditions.

3.11 SYSTEM VERIFICATION

A. General: The system installation shall be complete and startup service performed. Certify all controls are installed and the software programs have been completely exercised for proper equipment operation. Complete system startup services prior to substantial completion. The system will not be accepted until the field test procedures have been demonstrated, documented and all errors corrected.

3.12 OWNERSHIP OF PROPRIETARY MATERIAL

- A. All project-developed software and documentation shall become the property of the Owner. These include, but are not limited to:
 - 1. Record drawings
 - 2. All documentation

END OF SECTION

SECTION 23 0993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control sequences for HVAC systems.
- B. Related Section: Division 23 Section "Instrumentation and Control for HVAC" contains requirements that relate to this Section.

1.3 SUBMITTALS

A. Shop Drawings: Show operating sequences of various equipment, devices, components, and materials included in the Text and defining the components' contribution to the system.

PART 2 - PRODUCTS - (Not Applicable)

PART 3 - EXECUTION

3.1 GENERAL CONTROL SEQUENCE

- A. All fire and smoke detectors (including duct detectors) are furnished by Division 28. Duct detectors shall be mounted by Division 23, electrically and connected by Division 28. Detector power and supervisory and remote annunciation by Division 28.
 - 1. Fire and smoke detection functions shall be initiated by dry-contact outputs from the Division 28 fire detection and control system. These output contact circuits will be brought to the appropriate mechanical equipment room by Division 28 for interface with the HVAC system by this contractor.
- B. Safety Sequences A/C Systems:
 - 1. Fans:
 - a. Discharge and return air smoke detectors shall be hard-wired in series to shut down fans upon trip-out of any one or more devices. The H-O-A switch at the motor starter shall not override this shut-down.
 - b. Fan shall be restored to service only after tripped device has been manually reset.
 - c. Supply air fans (and return fans, where present) shall also be interlocked to stop upon local area smoke detector signal from the FACP (Fire Alarm Control Panel).
 - d. Exhaust relief fans normally operated with associated supply air systems shall also be stopped by safety trip as specified in 1-a.
 - e. All air handlers, exhaust fans, fan coils 2,000 CFM or over shall be interlocked with the fire alarm system (FACP) to stop upon smoke detection in the local area.

3.2 EXHAUST FANS

- A. Occupied Mode: Exhaust fans that are scheduled to run continuously during occupied mode shall be controlled by a time clock.
 - 1. All exhaust fans are to run continuously during occupied mode.

3.3 SPLIT SYSTEM FAN COILS AND HEAT PUMP UNITS

- A. Occupied Mode: The Programmable thermostat with wall temperature sensor shall initiate the following sequence in the occupied mode:
 - 1. The supply fan shall be energized and run continuously or cycle as set at the thermostat. A wall mounted sensor located in the space being served or return air duct mounted sensor will control the compressor (stages, if present) for cooling, heat pump heating or electric heating to maintain a desired space temperature heating and cooling setpoints. There shall be a dead band between the valve throttling ranges to insure that both heating and cooling cannot operate at the same time.

3.4 NON-DUCTED INDOOR / OUTDOOR SPLIT SYSTEM HEAT PUMP UNIT CONTROL SEQUENCE

- A. Split system air conditioning units shall be controlled by 7-day electronic programmable thermostats.
 - 1. Occupied Periods (Mode): Indoor unit supply fan shall cycle with the compressors to maintain space set point. An automatic changeover reversing valve shall modulate to provide heating or cooling based on programmed set point. There shall be a dead band between heating and cooling. Compressors shall cycle to maintain space set point.

3.5 MOTORIZED DAMPERS

A. Interlock motorized dampers with local fan. Fan start/stop status shall open/close damper. All motorized dampers shall fail open.

3.6 DUCT SMOKE DETECTORS

- A. All fire and smoke detectors (including duct detectors) are furnished by Division 28. Duct detectors shall be mounted by Division 23, and electrically connected by Division 28. Detector power and supervisory and remote annunciation by Division 28.
 - 1. Fire and smoke detection functions shall be initiated by dry-contact outputs from the Division 28 fire detection and control system. These output contact circuits will be brought to the appropriate mechanical equipment room by Division 28 for interface with the HVAC system / equipment by this contractor. Division 28 contractor shall make final connections to HVAC equipment.

3.7 FIRE / SMOKE DAMPERS

A. Fire/smoke dampers are provided as part of the Mechanical work. All control and power wiring associated with the smoke/fire dampers in the Electrical / Fire alarm work. Fire/smoke dampers shall close upon sensing smoke by a local duct smoke detector.

3.8 INSTALLATION REQUIREMENTS

A. All electrical work performed in the installation of the temperature control system as described in this specification shall be per the National Electrical Code (NEC) and per applicable State and local codes. Conduit shall be run parallel to building lines property supported and sized at a maximum of 40 percent fill. In no case shall field installed conduit smaller than (conflict with 3.1A)" trade size be allowed.

3.9 OPERATING MANUALS AND SERVICE MANUALS

- A. Final Acceptance: Final acceptance will require the Contractor to deliver to the Building Owner's Agent / Authorized Representative written final sequence of operation.
 - 1. Three (3) complete copies of the operating instructions/system maintenance manuals and installation manuals. One (1) set shall be given directly to the Owner.
 - 2. Three (3) sets of "As-Builts", to exact scale, record drawings. All three (3) sets shall be given directly to the Owner. Close Out:
 - 1 mylar of single line drawing
 - 2 sets blue-line, as builts
 - 1 disk, as built
 - 3. Three (3) copies of final test reports. One (1) set shall be given directly to the Owner.
 - 4. Three (3) copies indicating the name and phone number of person to contact in the event of equipment failure, and date when system warranty will be terminated. One (1) set shall be given directly to the Owner.
 - 5. Three (3) sets of data sheets for each piece of equipment supplied. One (1) set shall be given directly to the Owner.
 - 6. Thermostat / sensor locations.

END OF SECTION

SECTION 23 2300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Shop Drawing Scale: 1/4 inch equals 1 foot (1:50).
 - 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Copper Tube: ASTM B 280, Type ACR.
 - B. Wrought-Copper Fittings: ASME B16.22.
 - C. Wrought-Copper Unions: ASME B16.22.
 - D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
 - E. Brazing Filler Metals: AWS A5.8.
 - F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

- A. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.
 - 2. Core: Removable ball-type check valve with stainless-steel spring.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Copper spring.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
- B. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C).

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

- 6. Superheat: Adjustable.
- 7. Reverse-flow option (for heat-pump applications).
- 8. End Connections: Socket, flare, or threaded union.
- 9. Working Pressure Rating: 450 psig (3100 kPa).
- C. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
- D. Permanent Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig (14 kPa).
 - 8. Working Pressure Rating: 500 psig (3450 kPa).
 - 9. Maximum Operating Temperature: 240 deg F (116 deg C).

2.3 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R410A: Pentafluoroethane / Difluoromethane.

PART 3 - EXECUTION

- 3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A
 - A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

- B. Hot-Gas and Liquid Lines: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- B. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operation" for control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- R. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."
- S. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- T. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- U. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- V. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Spring hangers to support vertical runs.
 - 3. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).

3.6 ADJUSTING

A. Adjust set-point temperature of air-conditioning controllers to the system design temperature.

END OF SECTION

SECTION 23 3113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall round and flat-oval ducts and fittings.
- 3. Sheet metal materials.
- 4. Duct liner.
- 5. Sealants and gaskets.
- 6. Hangers and supports.

B. Related Sections:

- 1. Division 01 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.
- 3. Division 23 Section "HVAC Insulation" for duct insulation.

1.3 PERFORMANCE REQUIREMENTS

- A. Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated.
 - 1. Static-Pressure Classes:
 - a. Supply Ducts : 2-inch wg.
 - b. Return Ducts (Negative Pressure): 2-inch.
 - c. Exhaust Ducts (Negative Pressure): 2-inch wg.
 - d. Outside Air Ducts: 1-inch wg.
 - 2. Leakage Class:
 - a. Round Supply-Air Duct: 3 cfm/100 sq. ft. at 1-inch wg.
 - b. Flat-Oval Supply-Air Duct: 3 cfm/100 sq. ft. at 1-inch wg.
 - c. Rectangular Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg.
 - d. Flexible Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg.

- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.
 - 4. Refer to the Structural notes on the Structural drawings for information on the seismic requirements.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings including plans, elevations, sections, details of components, and attachments to other work..
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes. For exhaust ducts systems, indicate the classification of the materials handled as defined in this Section. Fittings.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- C. Ductwork Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
- 4. Size and location of initial access modules for acoustical tile.
- 5. Penetrations of smoke barriers and fire-rated construction.
- 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Cable tray.
 - d. Speakers.
 - e. Sprinklers.
 - f. Access panels.
 - g. Perimeter moldings.
- E. Field quality-control reports.
- F. As-Built Record drawings including duct systems routing, fittings details, reinforcing, support, and installed accessories and devices, in accordance with Division 23 Section "Basic Mechanical Requirements" and Division 01.
- G. Maintenance Data: for volume control devices, fire dampers, and smoke dampers, in accordance with Division 23 Section "Basic Mechanical Requirements" and Division 01.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Packaging: Ductwork and insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.
 - B. Materials shall be stored and staged in a clean environment, free of dust and protected from weather.
 - C. Stainless steel sheet shall be delivered and stored with mill-applied adhesive protective paper, maintained through fabrication and installation.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - 1. Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure classification.
 - 2. Crossbreaking or Cross Beading: Crossbreak or bead duct sides that are 19 inches and larger and are 20 gage or less, with more than 10 sq.ft. of unbraced panel area, as indicated in SMACNA "HVAC Duct Construction Standard," unless they are lined or are externally insulated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible." See Duct Schedule of this section for additional requirements.

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter (diameter of the round sides connecting the flat portions of the duct).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- 2.3 SHEET METAL MATERIALS
 - A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

- B. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- D. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- E. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.4 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F (24 deg C) mean temperature.
 - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F (24 deg C) mean temperature.

- 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
- 5. Thickness: as indicated in Duct Schedule of this section.
- 6. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- 7. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- B. Natural-Fiber Duct Liner: 85 percent cotton, 10 percent borate, and 5 percent polybinding fibers, treated with a microbial growth inhibitor and complying with NFPA 90A or NFPA 90B.
 - 1. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F (0.034 W/m x K) at 75 deg F (24 deg C) mean temperature when tested according to ASTM C 518.
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to ASTM E 84; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- C. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm) thick galvanized steel, aluminum, or stainless steel to match duct material; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
- D. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).
 - 7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.

- 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.
- 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch (2.4-mm) diameter, with an overall open area of 23 percent.
- 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches (102 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.

- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Unless otherwise indicated, conceal ducts from view in finished and occupied spaces by locating in mechanical shafts, hollow wall construction, or above suspended ceilings. Do not encase horizontal runs in solid partitions, except as specifically shown.
- H. Coordinate layout with suspended ceiling and lighting layouts and similar finished work with other trades.
- I. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- J. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- K. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- L. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- M. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- N. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 SEAM AND JOINT SEALING

- A. Seal duct seams and joints for duct static-pressure and leakage classes specified in "Performance Requirements" Article, according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 1-2, "Standard Duct Sealing Requirements," unless otherwise indicated.
 - 1. Seal externally insulated ducts prior to insulation installation.
- B. Seal Classes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 1-2, "Standard Duct Sealing Requirements."

3.3 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

- B. Building Attachments: Concrete inserts, or structural-steel fasteners appropriate for construction materials to which hangers are being attached. If specific attachment is not indicated, anchor supports to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
 - 6. Drilling for and Setting Anchors:
 - a. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid pre-stressed tendons, electrical and telecommunications conduit, and gas lines.
 - b. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - c. Wedge Anchors: Protect threads from damage during anchor installation. Heavyduty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - d. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - e. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- D. Hangers Exposed to View: Unless detailed otherwise, threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.4 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.5 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.6 FIELD QUALITY CONTROL

- A. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
- B. Duct system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.7 DUCT SCHEDULE

- A. Supply Ducts:
 - 1. Ducts Connected to Rooftop AC-Units and FC-Units:
 - a. Galvanized Steel.
 - b. Pressure Class: Positive 2-inch wg (500 Pa).
- B. Return Ducts:

1.

- Ducts Connected to Rooftop AC-Units and FC-Units:
 - a. Galvanized Steel.
 - b. Pressure Class: Positive or negative 2-inch wg (500 Pa).
- C. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting Air:
 - a. Galvanized Steel.
 - b. Pressure Class: Negative 2-inch wg (500 Pa).
- D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units:
 - a. Galvanized Steel.
 - b. Pressure Class: Positive or negative 1-inch wg (250 Pa).
- E. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts: Stainless steel.
 - 3. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.

F. Duct Liner Schedule:

DUCT AND LINER SCHEDULE				
DUCTWORK TYPE	NOTES	TYPE	LINER ♦	INSULATION
				\otimes
Concealed Low-Pressure Supply & Return (A/C - Heat)	_	Round	Yes *	Yes
		Rect.	Yes *	Yes
Exposed to Service Outside Air Ductwork	_	Round	No	Yes
		Rect.	No	Yes
General Exh. Fan Ductwork Relief Air Ductwork to Roof Hood	_	Round & Rect.	No	Yes
		Round & Rect.	No	No
Transfer Ducts	-	Round	Yes	No
		Rect.	Yes	No

- * Line ductwork 10'-0" beyond discharge and 10'-0" before return of all fan coils (or IU-).
 - Line ductwork 25'-0" beyond discharge and 25'-0" before return of all air handlers (RTUs, AHUs).
 Line main duct runs only.
- Duct liner is to be 1" 1-1/2 pound density unless otherwise noted.
- All ductwork designated to be insulated is to be insulated full length (with or without liner).
 - G. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts: Galvanized steel.
 - H. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm (5 m/s) or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm (7.6 m/s) or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.

- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam or welded.
- I. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct only.
 - a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
 - c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION

SECTION 23 3300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Backdraft and pressure relief dampers.
- 2. Manual volume dampers.
- 3. Control dampers.
- 4. Fire dampers.
- 5. Smoke dampers.
- 6. Combination fire and smoke dampers.
- 7. Turning vanes.
- 8. Remote damper operators.
- 9. Duct-mounted access doors.
- 10. Flexible connectors.
- 11. Flexible ducts.
- B. Related Sections:
 - 1. Division 08 Section "Access Doors and Frames" for ceiling- and wall-mounted access panels and doors.
 - 2. Division 23 Section "Air Inlets and Outlets" for diffusers, registers and grilles.
 - 3. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 - 4. Division 23 Section "Instrumentation and Control for HVAC" for electric dampers actuators.
 - 5. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. Backdraft and pressure relief dampers.
 - 2. Barometric relief dampers.
 - 3. Manual volume dampers.
 - 4. Control dampers
 - 5. Fire dampers.
 - 6. Ceiling dampers.
 - 7. Smoke dampers.
 - 8. Combination fire and smoke dampers.
 - 9. Turning vanes.
 - 10. Remote damper operators.
 - 11. Duct-mounted access doors.

- 12. Flexible connectors.
- 13. Flexible ducts.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Wiring Diagrams: For power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
 - 1. Include all necessary components including, but not limited to the requirements as indicated in Division 23 Section "Common Work Results for HVAC."
- D. Source quality-control reports.
- E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.
- 1.4 QUALITY ASSURANCE
 - A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
 - B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and No. 4 finish for exposed ducts.
- D. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: Comply with ASTM B 221 (ASTM B 221M), Alloy 6063, Temper T6.
- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Airguide Corp.
 - 3. American Warming and Ventilating; a division of Mestek, Inc.
 - 4. Arrow Louver and Damper; Louvers & Dampers, Inc. Cesco Products; a division of Mestek, Inc.
 - 5. [Duro Dyne Inc.]
 - 6. Greenheck Fan Corporation.
 - 7. [Lloyd Industries, Inc.]
 - 8. Metal Form.
 - 9. Nailor Industries Inc.
 - 10. NCA Manufacturing, Inc.
 - 11. Penn Ventilator Co.
 - 12. Pottorff; a division of PCI Industries, Inc.
 - 13. Ruskin Company.
 - 14. SEMCO Incorporated.
 - 15. Vent Products Company, Inc.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 3000 fpm (15 m/s).
- D. Maximum System Pressure: 4-inch wg (1.0 kPa).
- E. Frame: 18-gauge 0.052-inch- (1.3-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Blades: Multiple single-piece blades, maximum 6-inch (150-mm) width, 0.050-inch- (1.2-mm-) thick aluminum sheet with sealed edges.

- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Plated steel.
 - 2. Diameter: 0.20 inch (5 mm).
- J. Tie Bars and Brackets: Aluminum.
- K. Return Spring (for vertical airflow installations): Adjustable tension.
- L. Bearings: Synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. 90-degree stops.

2.3 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Air guide Corp.
 - 3. American Warming and Ventilating; a division of Mestek, Inc.
 - 4. Arrow Louver and Damper; Louvers & Dampers Inc.
 - 5. Cesco Products; a division of Mestek, Inc.
 - 6. Duro Dyne Inc.
 - 7. Greenheck Fan Corporation.
 - 8. Lloyd Industries, Inc.
 - 9. Metal Form.
 - 10. Nailor Industries Inc.
 - 11. NCA Manufacturing, Inc.
 - 12. Penn Ventilator Co.
 - 13. Pottorff; a division of PCI Industries, Inc.
 - 14. Ruskin Company.
 - 15. SEMCO Incorporated.
 - 16. Vent Products Company, Inc.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 2000 fpm (10 m/s).
- D. Maximum System Pressure: 2-inch wg (0.5 kPa).
- E. Frame: 18 gauge 0.063-inch- (1.6-mm-) thick extruded aluminum, with welded corners and mounting flange.

- F. Blades:
 - 1. Multiple, 0.025-inch- (0.6-mm-) thick, roll-formed aluminum.
 - 2. Maximum Width: 6 inches (150 mm).
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
- G. Blade Seals: Vinyl.
- H. Blade Axles: Galvanized steel.
- I. Tie Bars and Brackets:
 - 1. Material: Aluminum.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic.
- L. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Standard leakage rating, with linkage outside airstream.
 - 2. Suitable for horizontal or vertical applications.
 - 3. Frames:
 - a. Hat-shaped, galvanized-steel channels, 16-gauge, 0.064-inch (1.62-mm) minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 4. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 16-gauge, 0.064 inch (1.62 mm) thick.
 - 5. Blade Axles: Galvanized steel.
 - 6. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 7. Tie Bars and Brackets: Galvanized steel.
 - 8. Damper Control Hardware: Zinc-plated, die-cast core with a heavy-gauge dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3.4-inch hexagonal locking nut. Provide center hole to suit damper operating rod size.
 - a. Accessories: Include locking device to hold single-blade dampers in a fixed position without vibration.

- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. Standard leakage rating, with linkage outside airstream.
 - 2. Suitable for horizontal or vertical applications.
 - 3. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 4. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - 5. Blade Axles: [Galvanized steel] [Stainless steel] [Nonferrous metal].
 - 6. Bearings:
 - a. [Oil-impregnated bronze] [Molded synthetic] [Stainless-steel sleeve].
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 7. Tie Bars and Brackets: Aluminum.
 - 8. Damper Control Hardware: Zinc-plated, die-cast core with a heavy-gauge dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3.4-inch hexagonal locking nut. Provide center hole to suit damper operating rod size.
 - a. Accessories: Include locking device to hold single-blade dampers in a fixed position without vibration.

2.5 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming & Ventilating, Inc.
 - 3. Arrow United Industries; a division of Mestek, Inc.
 - 4. Cesco Products; a division of Mestek, Inc.
 - 5. Greenheck Fan Corporation.
 - 6. Louvers and Dampers, Inc.
 - 7. McGill AirFlow LLC.
 - 8. METALAIRE, Inc.
 - 9. Nailor Industries Inc.
 - 10. NCA Manufacturing, Inc.
 - 11. Penn Ventilator Co.
 - 12. PHL, Inc.
 - 13. Pottorff; a division of PCI Industries, Inc.
 - 14. Prefco; Perfect Air Control, Inc.
 - 15. Ruskin Company.
 - 16. Vent Products Company, Inc.
 - 17. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2375-fpm (12-m/s) velocity. (Damper sizes up to 64 sq. ft. for vertical mount and 25 sq. ft. for horizontal mount.)

- D. Fire Rating: [1-1/2] [and] [3] hours.
- E. Frame: [Curtain type with blades outside airstream] [Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream]; fabricated with roll-formed, 20-gauge, 0.040-inch- (1.02-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch (1.3 or 3.5 mm) thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 22-gauge, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 22-gauge, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- K. Heat-Responsive Device: Electric resettable link and switch package, factory installed, 165 deg F (74 deg C) rated.

2.6 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. PHL, Inc.
 - 6. Ruskin Company.
- B. General Requirements: Label according to UL 555S by an NRTL.
 - 1. Damper manufacturer shall have tested and qualified with UL, a complete range of damper sizes covering all dampers required by the specification. Testing and UL qualifying a single damper size is not acceptable.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity from the open position.
- D. Frame: Multiple-blade type; fabricated with roll-formed, 16-gauge, 0.064-inch- (1.6-mm-) thick galvanized steel; with mitered and interlocking corners.

- E. Blades: Roll-formed, horizontal, interlocking, 16 gauge, 0.064-inch- (1.6-mm-) thick, galvanized sheet steel.
 - 1. Blade Seals: Silicone rubber designed to withstand 450 deg F.
- F. Bearings: Stainless steel sleeve pressed into the frame.
- G. Jamb Seals: Silicone impregnated fiberglass with stainless steel flexible metal compression type cover.
- H. Leakage: Class I, Rated at less than 4 cfm/sq.ft. leakage at 1-inch w.g.
- I. Rated pressure and velocity to exceed design airflow conditions.
- J. Mounting Sleeve: Factory-installed, 18-gauge, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- K. Damper Motors: Two-position action.
 - 1. Damper and actuator shall be supplied as a single entity which meets all applicable UL555S qualifications for both dampers and actuators.
 - 2. Damper and actuator assembly shall be factory cycled to assure operation.
 - 3. Actuator shall be side plate mounted out of air stream.
- L. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.
- M. Accessories:
 - 1. Auxiliary switches for position indication.
 - 2. Test and reset switches remote mounted.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. Ruskin Company.
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
 - 1. Damper manufacturer shall have tested and qualified with UL, a complete range of damper sizes covering all dampers required by the specification. Testing and UL qualifying a single damper size is not acceptable.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity from the open position.
- D. Fire Rating: As required for the wall where installed.
- E. Frame: Multiple-blade type; fabricated with roll-formed, 16-gauge, 0.064-inch- (1.3-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- G. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.
- H. Blades: Roll-formed, horizontal, interlocking, 16-gauge, 0.064-inch- (1.3-mm-) thick, galvanized sheet steel.
 - 1. Blade Seals: Silicone rubber designed to withstand 450 deg. F.
- I. Bearings: Stainless steel sleeve pressed into the frame.
- J. Jamb Seals: Stainless steel, flexible metal compression type.
- K. Leakage: Class I, Rated at less than 4 cfm/sq.ft. leakage at 1-inch w.g.
- L. Rated pressure and velocity to exceed design airflow conditions.
- M. Mounting Sleeve: Factory-installed, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- N. Master control panel for use in dynamic smoke-management systems.
- O. Damper Motors: Two-position action.

- P. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

2.8 TURNING VANES

- A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall for ducts up to 48 inches (1200 mm) wide and double wall for larger dimensions.

2.9 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff; a division of PCI Industries, Inc.
 - 2. Ventfabrics, Inc.
 - 3. Young Regulator Company.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Brass.

- D. Cable: Stainless steel.
- E. Wall-Box Mounting: Recessed, 3/4 inch (19 mm) deep.
- F. Wall-Box Cover-Plate Material: Stainless steel.

2.10 DUCT-MOUNTED ACCESS DOORS

- A. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel, where indicated.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches.
 - d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges and two compression latches with outside and inside handles.
- B. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Single wall or double wall with insulation fill, to match ductwork, with metal thickness applicable for duct pressure class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 10-inch wg (2500 Pa).
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.11 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.

- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch (1.3-mm) carbon steel, or 0.0428-inch (1.1-mm) stainless steel to match ductwork.
- D. Fasteners: Carbon or stainless steel to match installation. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F (1093 deg C).
- F. Minimum Pressure Rating: 10-inch wg (2500 Pa), positive or negative.

2.12 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm) wide attached to 2 strips of 2-3/4-inch- (70-mm-) wide, 24-gauge, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 20-gauge, 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
- E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 26 oz./sq. yd. (810 g/sq. m).
 - 2. Tensile Strength: 530 lbf/inch (93 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).
- F. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd. (542 g/sq. m).
 - 2. Tensile Strength: 285 lbf/inch (50 N/mm) in the warp and 185 lbf/inch (32 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).
- G. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
 - 2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

2.13 FLEXIBLE DUCTS

- A. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg (250 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20 m/s).
 - 3. Temperature Range: Minus 10 to plus 160 deg F (Minus 23 to plus 71 deg C).
 - 4. Insulation R-value: 3.5 to comply with ASHRAE/IESNA 90.1-2004.
- B. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft/control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire, smoke and combination fire and smoke dampers according to UL listing.
- H. Install fusible links in fire dampers.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from, control dampers, backdraft dampers, and equipment.

- 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
- 7. At each change in direction and at maximum 50-foot (15-m) spacing, when compliance with ASHRAE 62.1-2004 is required, in which Section 7.2.4 "Ventilation System Start-Up" requires that distribution systems be clean of dirt and debris.
- 8. Control devices requiring inspection.
- 9. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- L. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- M. Install flexible connectors to connect ducts to equipment.
- N. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- O. Connect terminal units to supply ducts with maximum 12-inch (300-mm) lengths of flexible duct. Do not use flexible ducts to change directions.
- P. Connect diffusers, grilles or light troffer boots, in an accessible (lay-in) ceiling to ducts with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.
- Q. Connect diffusers, grilles or light troffer boots, in a non-accessible (hard) ceiling to ducts directly. Flexible ducts shall not be installed above a non-accessible ceiling.
- R. Connect flexible ducts to metal ducts with draw bands.
- S. Install duct test holes where required for testing and balancing purposes.

3.2 ADJUSTING

- A. Adjust duct accessories for proper settings.
- B. Adjust fire and smoke dampers for proper action.
- C. Cleaning: Clean factory finished surfaces. Repair any marred or scratched surfaces.

3.3 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION

SECTION 23 3423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of power ventilators:
 - 1. Centrifugal Square Inline.
- B. Related Sections: The following sections contain requirements that relate to this Section:
 - 1. Division 01 Section "Testing, Adjusting and Balancing" for air-handling systems testing, adjusting, and balancing requirements and procedures.
 - 2. Division 07 Section "Roof Accessories" for roof curbs and equipment supports.
 - 3. Division 23 Section "Vibration Controls" for vibration hangers and supports.
 - 4. Division 23 Section "Sequence of Operations for HVAC Controls" for control sequence descriptions.
 - 5. Division 26 for disconnect switches.
 - 6. Division 26 Section "Motor Control Centers" for motor starters.
- C. Products furnished but not installed under this Section include roof curbs for roof-mounted exhaust fans.

1.3 SUBMITTALS

- A. Product Data: For selected models, including specialties, accessories, and the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound power ratings.
 - 3. Motor ratings and electrical characteristics plus motor and fan accessories.
 - 4. Materials gages and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
- B. Shop Drawings: From manufacturer detailing equipment assemblies and indicating dimensions, weights, required clearances, components, and location and size of field connections.
- C. Coordination Drawings: In accordance with Division 23 Section "Basic Mechanical Requirements," for roof penetration requirements and for reflected ceiling plans drawn accurately to scale and coordinating penetrations and units mounted above ceiling. Show the following:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension members.
 - 3. Method of attaching hangers to building structure.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinkler heads, access panels, and special moldings.

- D. Wiring Diagrams: Detail power, signal, and control wiring. Differentiate between manufacturer-installed wiring and field-installed wiring.
- E. Product Certificates: Signed by manufacturers of air-handling units, certifying that their products comply with specified requirements.
- F. Maintenance Data: For units, for inclusion in Operating and Maintenance Manual specified in Division 01, and Division 23 Section "Basic Mechanical Requirements."

1.4 QUALITY ASSURANCE

- A. UL Compliance: Fans shall be designed, manufactured, and tested in accordance with UL 705 "Power Ventilators."
- B. Nationally Recognized Testing Laboratory and NEMA Compliance (NRTL): Fans and components shall be NRTL listed and labeled. The term "NRTL" shall be as defined in OSHA Regulation 1910.7.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. Electrical Component Standard: Components and installation shall comply with NFPA 70 "National Electrical Code."
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Lift and support units with the manufacturer's designated lifting or supporting points.
 - B. Disassemble and reassemble units as required for movement into the final location following manufacturer's written instructions.
 - C. Deliver fan units as a factory-assembled unit to the extent allowable by shipping limitations, with protective crating and covering.

1.6 SEQUENCING AND SCHEDULING

- A. Coordinate the installation of roof curbs, equipment supports, and roof penetrations specified in Division 07.
- B. Coordinate the size and location of structural steel support members.
- 1.7 EXTRA MATERIALS
 - A. Furnish one additional complete set of belts for each belt-driven fan.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Centrifugal Square Inline:
 - a. Ammerman Company, Inc.
 - b. Carnes Company, Inc.
 - c. Chelsea Fans & Blowers, Inc.
 - d. Cook (Loren) Co.
 - e. Greenheck Fan Corp.
 - f. ILG Industries, Inc.
 - g. Jenn Industries, Inc.
 - h. Penn Ventilator Co., Inc.
 - i. Acme.
 - j. Twin City Fan.

2.2 SOURCE QUALITY CONTROL

- A. Testing Requirements: The following factory tests are required:
 - 1. Sound Power Level Ratings: Comply with AMCA Standard 301 "Method for Calculating Fan Sound Ratings From Laboratory Test Data." Test fans in accordance with AMCA Standard 300 "Test Code for Sound Rating." Fans shall be licensed to bear the AMCA Certified Sound Ratings Seal.
 - 2. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings in accordance with AMCA Standard 210/ASHRAE Standard 51 Laboratory Methods of Testing Fans for Rating.
- 2.3 FANS, GENERAL
 - A. General: Provide fans that are factory fabricated and assembled, factory tested, and factory finished with indicated capacities and characteristics.
 - B. Fans and Shafts: Statically and dynamically balanced and designed for continuous operation at the maximum rated fan speed and motor horsepower.
 - 1. Fan Shaft: Turned, ground, and polished steel designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fan's class.
 - C. Belt Drives: Factory mounted, with final alignment and belt adjustment made after installation.
 1. Service Factor: 1.4.
 - D. Belts: Oil-resistant, nonsparking, and nonstatic.
 - E. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15 hp; fixed pitch for use with motors larger than 15 hp. Select pulley so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 1. Belt Guards: Provide steel belt guards for motors mounted on the outside of the fan cabinet.
 - F. Shaft Bearings: Provide type indicated, having a median life "Rating Life" (AFBMA (L(50)) of 200,000, calculated in accordance with AFBMA Standard 9 for ball bearings and AFBMA Standard 11 for roller bearings.
 - G. Factory Finish: The following finishes are required:
 - 1. Sheet Metal Parts: Prime coating prior to final assembly.
 - 2. Exterior Surfaces: Baked-enamel finish coat after assembly.

2.4 CENTRIFUGAL SQUARE INLINE.

- A. Construction: The fan shall be of bolted construction utilizing corrosion resistant fasteners. Housing shall be minimum 18 gauge galvanized steel with integral duct collars. Bolted access doors shall be provided on three sides, sealed with closed cell neoprene gasketing. Housing shall be pre-drilled to accommodate universal mounting feet for vertical or horizontal installation. Unit shall bear an engraved aluminum nameplate. Nameplate shall indicate design CFM and static pressure. Unit shall be shipped in ISTA certified transit tested packaging.
- B. Wheel: Wheel shall be centrifugal backward inclined, constructed of 100% aluminum, including a precision machined cast aluminum hub. Wheel inlet shall overlap an aerodynamic aluminum inlet cone to provide maximum performance and efficiency. Wheel shall be balanced in accordance with AMCA standard 204-96, balance quality and vibration levels for fans.
- C. Motor: Motor shall be heavy duty type with permanently lubricated sealed bearings and furnished at the specified voltage, phase and enclosure.
- D. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 percent to less than 50 percent. Factory mount inside the fan housing and factory wire. If not factory mounted and wired mechanical contractor to field mount and run all necessary control wiring if not unit mounted.

2.5 MOTORS

- A. Torque Characteristics: Sufficient to accelerate the driven loads satisfactorily.
- B. Motor Sizes: Minimum sizes and electrical characteristics as indicated. If not indicated, large enough so that the driven load will not require the motor to operate in the service factor range.
- C. Temperature Rating: 50 deg C maximum temperature rise at 40 deg C ambient for continuous duty at full load (Class A Insulation).
- D. Service Factor: 1.15 for polyphase motors and 1.35 for single-phase motors.
- E. Motor Construction: NEMA Standard MG 1, general purpose, continuous duty, Design B. Provide permanent-split capacitor classification motors for shaft-mounted fans and capacitor start classification for belted fans.
 - 1. Bases: Adjustable.
 - 2. Bearings: The following features are required:
 - a. Ball or roller bearings with inner and outer shaft seals.
 - b. Grease lubricated.
 - c. Designed to resist thrust loading where belt drives or other drives produce lateral or axial thrust in motor.
 - 3. Enclosure Type: The following features are required:
 - a. Open drip-proof motors where satisfactorily housed or remotely located during operation.
 - b. Guarded drip-proof motors where exposed to contact by employees or building occupants.
 - 4. Overload protection: Built-in, automatic reset, thermal overload protection.

- 5. Noise rating: Quiet.
- 6. Efficiency: Energy-efficient motors shall have a minimum efficiency as scheduled in accordance with IEEE Standard 112, Test Method B. If efficiency not specified, motors shall have a higher efficiency than "average standard industry motors" in accordance with IEEE Standard 112, Test Method B.
- 7. Nameplate: Indicate the full identification of manufacturer, ratings, characteristics, construction, and special features.
- F. Starters, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances, roof curbs, equipment supports, and other conditions affecting performance of fans.
- B. Do not proceed until unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Install fans level and plumb, in accordance with manufacturer's written instructions. Support units as described below, using the vibration control devices indicated. Vibration control devices are specified in Division 23 Section "Vibration Controls."
 - 1. Support utility set fans on equipment bases and roof supports using neoprene pads. Secure units to anchor bolts installed in equipment base.
 - 2. Secure roof-mounted fans to roof curbs with cadmium-plated hardware.
 - a. Installation of roof curbs is specified in Division 07.
 - 3. Suspended Units: Suspend units from structural steel support frame using threaded steel rods and vibration isolation springs.
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

3.3 CONNECTIONS

- A. Duct installations and connections are specified in other Division 21, 22 and 23 Sections. Make final duct connections with flexible connections.
- B. Electrical Connections: The following requirements apply:
 - 1. Electrical power wiring is specified in Division 26.
 - 2. Temperature control wiring and interlock wiring are specified in Division 26.
 - 3. Grounding: Connect unit components to ground in accordance with the National Electrical Code.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Inspection: Arrange and pay for a factory-authorized service representative to perform the following:
 - 1. Inspect the field assembly of components and installation of fans including ductwork and electrical connections.
 - 2. Prepare a written report on findings and recommended corrective actions.

3.5 ADJUSTING, CLEANING, AND PROTECTING

- A. Adjust damper linkages for proper damper operation.
- B. Clean unit cabinet interiors to remove foreign material and construction dirt and dust. Vacuum clean fan wheel and cabinet.

3.6 COMMISSIONING

- A. Final Checks Before Start-Up: Perform the following operations and checks before start-up:
 - 1. Remove shipping blocking and bracing.
 - 2. Verify unit is secure on mountings and supporting devices and that connections for piping, ductwork, and electrical are complete. Verify proper thermal overload protection is installed in motors, starters, and disconnects.
 - 3. Perform cleaning and adjusting specified in this Section.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearings operations. Reconnect fan drive system, align belts, and install belt guards.
 - 5. Lubricate bearings, pulleys, belts, and other moving parts with factory-recommended lubricants.
 - 6. Verify manual and automatic volume control and that fire and smoke dampers in connected ductwork systems are in the full-open position.
 - 7. Disable automatic temperature control operators.
- B. Starting procedures for fans:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated RPM.
 - a. Replace fan and motor pulleys as required to achieve design conditions.
 - 2. Measure and record motor electrical values for voltage and amperage.
- C. Shut unit down and reconnect automatic temperature control operators.
- D. Refer to Division 01 Section "Testing, Adjusting and Balancing" for procedures for air-handling-system testing, adjusting, and balancing.

3.7 DEMONSTRATION

- A. Demonstration Services: Arrange and pay for a factory-authorized service representative to train Owner's maintenance personnel on the following:
 - 1. Procedures and schedules related to start-up and shutdown, troubleshooting, servicing, preventative maintenance, and how to obtain replacement parts.

- 2. Familiarization with contents of operating and maintenance manuals specified in Division 01 Section "Closeout Procedures" and Division 23 Section "Basic Mechanical Requirements."
- B. Schedule training with at least 7 days' advance notice.
- C. Refer to Division 01 Section "Operation and Maintenance Data."

END OF SECTION
SECTION 23 3700 - AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION OF WORK

- A. Extent of air outlets and inlets work is indicated by drawings and schedules, and by requirements of this Section.
- B. Refer to other Division 23 Sections for ductwork and duct accessories required in conjunction with air outlets and inlets; not work of this Section.
- C. Refer to Division 01 Section "Testing, Adjusting and Balancing" for balancing of air outlets and inlets; not work of this Section.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of air outlets and inlets of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.
- B. Codes and Standards:
 - 1. ARI Compliance: Test and rate air outlets and inlets in accordance with ARI 650 "Standard for Air Outlets and Inlets".
 - 2. ASHRAE Compliance: Test and rate air outlets and inlets in accordance with ASHRAE 70 "Method of Testing for Rating the Air Flow Performance of Outlets and Inlets".
 - 3. ADC Compliance: Test and rate air outlets and inlets in certified laboratories under requirements of ADC 1062 "Certification, Rating and Test Manual".
 - 4. ADC Seal: Provide air outlets and inlets bearing ADC Certified Rating Seal.
 - 5. NFPA Compliance: Install air outlets and inlets in accordance with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems".

1.4 SUBMITTALS

- A. Product Data: Submit manufacturer's technical product data for air outlets and inlets including the following:
 - 1. Schedule of air outlets and inlets indicating drawing designation, room location, number furnished, model number, size, and accessories furnished.
 - 2. Data sheet for each type of air outlet and inlet, and accessory furnished; indicating construction, finish, and mounting details.
 - 3. Performance data for each type of air outlet and inlet furnished, including aspiration ability, temperature and velocity traverses; throw and drop; and noise criteria ratings. Indicate selections on data.

- 4. Submit design drawings from fabric air distribution system confirming design CFM, static pressure, length, throw, N.C., velocities, hanging system, etc.
- B. Shop Drawings: Submit manufacturer's assembly-type shop drawing for each type of air outlet and inlet, indicating materials and methods of assembly of components.
- C. Maintenance Data: Submit maintenance data, including cleaning instructions for finishes, and spare parts lists. Include this data, product data, and shop drawings in maintenance manuals; in accordance with requirements of Division 01.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver air outlets and inlets wrapped in factory-fabricated fiber-board type containers. Identify on outside of container type of outlet or inlet and location to be installed. Avoid crushing or bending and prevent dirt and debris from entering and settling in devices.
- B. Store air outlets and inlets in original cartons and protect from weather and construction work traffic. Where possible, store indoors; when necessary to store outdoors, store above grade and enclose with waterproof wrapping.

PART 2 - PRODUCTS

2.1 CEILING AIR DIFFUSERS

- A. General: Except as otherwise indicated, provide manufacturer's standard ceiling air diffusers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.
- B. Performance: Provide ceiling air diffusers that have, as minimum, temperature and velocity traverses, throw and drop, and noise criteria ratings for each size device as listed in manufacturer's current data.
- C. Ceiling Compatibility: Provide diffusers with border styles that are compatible with adjacent ceiling systems, and that are specifically manufactured to fit into ceiling module with accurate fit and adequate support. Refer to general construction drawings and specifications for types of ceiling systems which will contain each type of ceiling air diffuser.
- D. Types: Provide ceiling diffusers of type, capacity, and with accessories and finishes as listed on diffuser schedule.
 - 1. Diffuser Faces:
 - a. Round: Round housing, core of concentric rings, round duct connection.
 - b. Square: Square housing, core of square concentric louvers, square or round duct connection.
 - c. Rectangular: Rectangular housing, core of rectangular concentric louvers, square or round duct connection.
 - d. Perforated: Round, square, or rectangular housing covered with removable perforated panel in frame. Conceal air pattern devices above panel.
 - e. Linear: Extruded aluminum continuous slot, single or multiple.

- 2. Diffuser Mountings:
 - a. Flush: Diffuser housing above ceiling surface with flush perimeter flange and gasket to seal against ceiling.
 - b. Lay-In: Diffuser housing sized to fit between ceiling exposed suspension tee bars and rest on top surface of tee bar.
- 3. Diffuser Dampers:
 - a. Opposed Blade: Adjustable opposed blade damper assembly, key operated from face of diffuser.
 - b. Butterfly: Two semicircular flaps connected to linkage adjustable from face of diffuser with key, and with straightening grid.
 - c. Fire Damper: Combination adjustable opposed blade damper and fusible link fire damper with UL approved link and assembly designed to meet requirements of NFPA 90A.
- E. Manufacturer: Subject to compliance with requirements, provide diffusers of one of the following:
 - 1. Anemostat Products Div.; Dynamics Corp. of America.
 - 2. Carnes Co.; Div. of Wehr Corp.
 - 3. Krueger Mfg. Co.
 - 4. Titus Products Div.; Philips Industries, Inc.
 - 5. Tuttle & Bailey; Div. of Interpace Corp.
 - 6. Metal Aire.
 - 7. Price.

2.2 WALL REGISTERS AND GRILLES

- A. General: Except as otherwise indicated, provide manufacturer's standard wall registers and grilles where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.
- B. Performance: Provide wall registers and grilles that have, as minimum, temperature and velocity traverses, throw and drop, and noise criteria ratings for each size device and listed in manufacturer's current data.
- C. Wall Compatibility: Provide registers and grilles with border styles that are compatible with adjacent wall systems, and that are specifically manufactured to fit into wall construction with accurate fit and adequate support. Refer to general construction drawings and specifications for types of wall construction which will contain each type of wall register and grille.
- D. Types: Provide wall registers and grilles of type, capacity, and with accessories and finishes as listed on register and grille schedule.
 - 1. Register and Grille Materials:
 - a. Steel Construction: Manufacturer's standard stamped sheet steel frame and adjustable blades.
 - b. Aluminum Construction: Manufacturer's standard extruded aluminum frame and adjustable blades.
 - 2. Register and Grille Patterns:
 - a. Double Deflection: 2 sets of blades in face, rear set at 90 degrees to face set.

- 3. Register and Grille Dampers:
 - a. Opposed Blade (OBD): Adjustable opposed blade damper assembly, key operated from face of register.
- 4. Register and Grille Accessories:
 - a. Plaster Frame: Perimeter frame designed to act as plaster stop and register or grille anchor.
 - b. Operating Keys: Tools designed to fit through register or grille face and operate volume control device and/or pattern adjustable.
- E. Manufacturer: Subject to compliance with requirements, provide registers and grilles of one of the following:
 - 1. Anemostat Products Div.; Dynamics Corp. of America.
 - 2. Carnes Co.; Div. of Wehr Corp.
 - 3. Titus Products Div.; Philips Industries, Inc.
 - 4. Metal Aire.
 - 5. Krueger.
 - 6. Tuttle & Bauer.
 - 7. Price.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine areas and conditions under which air outlets and inlets are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. General: Install air outlets and inlets in accordance with manufacturer's written instructions and in accordance with recognized industry practices to insure that products serve intended function.
 - B. Coordinate with other work, including ductwork and duct accessories, as necessary to interface installation of air outlets and inlets with other work.
 - C. Locate ceiling air diffusers, registers, and grilles, as indicated on general construction "Reflected Ceiling Plans." Unless otherwise indicated, locate units in center of acoustical ceiling module.

3.3 SPARE PARTS

A. Furnish to Owner, with receipt, 3 operating keys for each type of air outlet and inlet that require them.

END OF SECTION

SECTION 23 8126 - SPLIT-SYSTEM HEAT PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes split-system air-conditioning and heat pump units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated. Include performance data in terms of capacities, operating weights, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
- E. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of splitsystem units and are based on the specific system indicated. Other manufacturers' systems with equal performance characteristics may be considered. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. UL?
- C. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," Latest version FEMP and IECC.
- D. Coefficient of Performance: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," Latest version "FEMP and IECC.

E. Units shall be designed to operate with HCFC-free refrigerants.

1.5 COORDINATION

A. Coordinate size, location, and connection details with roof curbs, equipment supports, and roof penetrations specified in Division 07 Section "Roof Accessories."

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Compressor, Five years from date of Substantial Completion.
 - 2. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set of filters for each unit (in addition to filters changed out at unit start-up)
 - 2. Fan Belts: One set of belts for each unit

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Air Conditioning; Div. of Carrier Corporation.
 - 2. Day and Night
 - 3. Trane Company (The); Unitary Products Group.
 - 4. JCI
- B. Ductless Units:
 - 1. Carrier Air Conditioning; Div. of Carrier Corporation.
 - 2. Mitsubishi Electronics America, Inc.; HVAC Division.
 - 3. Sanyo Fisher (U.S.A.) Corp.

2.2 CONCEALED EVAPORATOR-FAN COMPONENTS

- A. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 1. Insulation: Faced, glass-fiber duct liner.
 - 2. Drain Pans: Stainless steel or thermoplastic with connection for drain; insulated.

- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- D. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor Or belt driven as indicated on drawings.
- E. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- F. Disposable Filters: 1 inch or 2 inch (25 mm or 50 mm) thick, as indicated on drawings, in fiberboard frames.
- G. Wiring Terminations: Connect motor to chassis wiring with plug connection.

2.3 WALL-MOUNTING, EVAPORATOR-FAN COMPONENTS

- A. Cabinet: thermoplastic with removable panels on front and ends, and discharge drain pans with internal condensate lift pump and drain connection.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- D. Fan: Direct drive, centrifugal fan.
- E. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- F. Filters: Permanent, cleanable.

2.4 CEILING-MOUNTING, EVAPORATOR-FAN COMPONENTS

- A. Cabinet: Enameled steel with removable panels on front and ends, and discharge drain pans with internal condensate lift pump and drain connection.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.

- C. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- D. Fan: Direct drive, centrifugal fan, with power-induced outside air, and integral condensate pump.
- E. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- F. Filters: Permanent, cleanable.
- 2.5 AIR-COOLED, COMPRESSOR-CONDENSER COMPONENTS
 - A. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - B. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - 1. Compressor Type: Reciprocating or scroll.
 - 2. manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - 3. Refrigerant Charge: R-22 or R-410A.
 - C. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.
 - D. Heat Pump Components: Reversing valve and low-temperature air cut-off thermostat.
 - E. Fan: Aluminum-propeller type, directly connected to motor.
 - F. Motor: Permanently lubricated, with integral thermal-overload protection.
 - G. Low Ambient Kit: Permits operation down to 0 deg F.
 - H. Mounting Base: Steel.
- 2.6 ACCESSORIES
 - A. Control equipment and sequence of operation are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls."
 - B. Automatic-reset timer to prevent rapid cycling of compressor.

- C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends Provide refrigerant expansion valve . Refrigerant piping sized per manufacturer's recommendations.
- D. Condenser and hail Guard :

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install ground-mounting, compressor-condenser components on 4-inch- thick, reinforced concrete base; 6 inches larger on each side than unit. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base
- D. Install roof-mounting compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmiumplated fasteners.
- E. Install seismic restraints.
- F. Install and connect precharged factory sized refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit. Where refrigerant piping is susceptible to damage by foot traffic, such as ground mounted units, provide suitable covers or guards to prevent damage.
- G. Provide aluminum jacket over outdoor refrigerant piping insulation.
- H. Low voltage control wiring shall be routed to compressor-condensing unit in conduit. Exposed wiring is not acceptable.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Duct Connections: Duct installation requirements are specified in Division 23 Section "Metal Ducts." Drawings indicate the general arrangement of ducts. Supply and return ducts shall be connected to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Division 23 Section "Air Duct Accessories."

- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- E. Electrical Connections: Comply with requirements in Division 26 Sections for power wiring, switches, and motor controls.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that units are installed and connected according to the Contract Documents.
 - 3. Lubricate bearings, adjust belt tension, and change filters.
- B. Perform startup checks according to manufacturer's written instructions and do the following:
 - 1. Fill out manufacturer's checklists.
 - 2. Check for unobstructed airflow over coils.
 - 3. Check operation of condenser capacity-control device.
 - 4. Verify that vibration isolation devices and flexible connectors dampen vibration transmission to structure.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

DIVISION 26 - ELECTRICAL

Pages

Section 26 0500	Common Work Results for Electrical	26 0500-1;	14
Section 26 0519	Low-Voltage Electrical Power Conductors and Cables	26 0519-1;	5
Section 26 0526	Grounding and Bonding for Electrical Systems	26 0526-1;	4
Section 26 0533	Raceways and Boxes for Electrical Systems	26 0533-1;	9
Section 26 0923	Lighting Control Devices	26 0923-1;	4
Section 26 2200	Low Voltage Transformers	26 2200-1;	5
Section 26 2413	Switchboards	26 2413-1;	6
Section 26 2416	Panelboards	26 2416-1;	5
Section 26 2726	Wiring Devices	26 2726-1;	6
Section 26 2813	Fuses	26 2813-1;	3
Section 26 2816	Enclosed Switches	26 2816-1;	3
Section 26 2913	Enclosed Controllers	26 2913-1;	5
Section 26 4313	Transient Voltage Suppression for Low-Voltage Power Circuits	26 4313-1;	4
Section 26 5100	Interior Lighting	26 5100-1;	7
Section 26 5600	Exterior Lighting	26 5600-1;	5
Section 26 6500	Electrical Special Inspections and Testing	26 6500-1;	4

SECTION 26 0500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.
 - 6. Supporting devices for electrical components.
 - 7. Electrical identification.
 - 8. Concrete equipment bases.
 - 9. Cutting and patching for electrical construction.
 - 10. Touchup painting.
 - 11. Basic Requirements for Serving Utility Company

1.3 DEFINITIONS

- A. Basic Contract definitions are as follows:
 - 1. Provide: The term "provide" means "to furnish and install, ready for the intended use and in complete operating condition."
 - 2. Install: The term "install" is used to describe operations at project site including the actual "unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations."
 - 3. Directed: Terms such as "directed," "requested," "authorized," "selected," "approved," "required," and "permitted" mean "directed by the Architect," "requested by the Architect," and similar phrases.
 - 4. Approve: The term "approved," where used in conjunction with the Architect's action on the Contractor's submittals, applications and requests, is limited to the Architect's duties and responsibilities as stated in the Conditions of the Contracts.
 - 5. Indicated: The term "indicated" refers to graphic representations, notes or schedules on the Drawings, or other Paragraphs or Schedules in the Specifications, and similar requirements in the Contract Documents. Where terms such as "shown," "noted," "scheduled," and "specified" are used, it is to help the reader locate the reference; no limitation on location is intended.

1.4 SUBMITTALS

A. General: Follow the procedures specified in Division 01 Section "Submittals."

- B. Prior Approvals:
 - 1. Submit for prior approval on Substitution Request Forms. Only written requests on these forms with complete submittal data will be considered.
 - 2. Refer to each Section for specific submittal requirements.
 - 3. Prior approval does not automatically mean equipment is approved. Final approval of all equipment and materials shall be determined during shop drawings review. Any changes required due to substitution are the Contractor's responsibility.
- C. Shop Drawings:
 - 1. The review of shop drawings by the Architect/Engineer shall not constitute agreement of any deviations from the plans and specifications and shall not relieve the Contractor from responsibility for any deviations, errors or omissions.
 - 2. All shop drawings shall be bound neatly in a minimum of four (4) separate hard cover 3-ring binder(s). The front cover of each binder shall contain an index to each section, with each product information separately tabbed in correlation to the index. Submit the following :
 - a. One(1) binder with all lighting fixtures and related equipment Section 265100 Interior Lighting Section 265600 Exterior Lighting
 - b. One(1) binder with the following sections
 - Section 260533 Raceways and Boxes for Electrical Systems (submit only for Non-Circular Wireways, Enclosures / Cabinets, Floorboxes and Concrete Pullboxes)
 - Section 262200 Low Voltage Transformers
 - Section 262200 Low voltage Transform
 - Section 262413 Switchboards
 - Section 262416 Panelboards
 - Section 262726 Wiring Devices
 - Section 262813 Fuses (submit the fuse manufacturer only)
 - Section 262816 Enclosed Switches
 - Section 262913 Enclosed Controllers
 - Section 263353 Satic Uninterruptible Power Supply
 - Section 263600 Transfer Switch
 - Section 264313 Transient Voltage Suppression (TVSS)
 - 3. Refer to drawings for the additional required equipment that is to be submitted as part of the shop drawing submittals.
- D. Electrical Special Inspections and Testing:
 - 1. Submit field inspections and test reports defined in Section 26 6500.
- E. Record 'As-Built' Documents:
 - 1. Maintain a separate set of electrical drawings at the job site which is not used for construction purposes. This set shall be kept updated by neatly marking all changes and deviations made during construction. Use a color that contrasts with the drawings. This same set of drawings shall be made available at all times during construction for review at any time by the Architect/Engineer.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. All Electrical workmen on this project shall be thoroughly knowledgeable of all applicable codes related to all electrical systems for this project. All installations shall be performed by skilled electrician tradesmen fully aware of the latest techniques, practices, and standards of the industry. Haphazard or poor installation practice will be cause for rejection of work.
- C. Good workmanship and appearance shall be considered important. Carefully lay out all work in advance to install in a neat and good workmanship-like manner all in accordance with recognized practices and standards of the industry.

1.6 COORDINATION

- A. All drawings, specifications and documents for this project shall be taken as a whole. Before undertaking each part of the Work, the Contractor shall be familiar with this project by carefully reviewing and comparing <u>all</u> documents that pertain to this project.
- B. In preparation of the contract documents, a reasonable effort has been made to provide equipment layouts and connections using the information of selected and specified manufacturers equipment as a Basis of Design. Since physical sizes, electrical connections, equipment arrangements and other requirements vary between each manufacturer, the final responsibility for proper fit and connections shall be the responsibility of the Contractor.
- C. Coordinate underground installations to avoid interference with underground structural building elements. Where interference is anticipated or possibly may occur, the Contractor may reasonably adjust the equipment layout within the Electrical Room, while maintaining the required clearances and compliance to all code requirements
- D. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - 1. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.
- E. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment requiring positioning before closing in the building.
- F. Coordinate electrical service connections to components furnished by utility companies.
 - 1. Coordinate installation and connection of exterior underground and overhead utilities and services, including provision for electricity-metering components.
 - 2. Comply with requirements of authorities having jurisdiction and of utility company providing electrical power and other services.
- G. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.

- H. Where electrical identification markings and devices will be concealed by acoustical ceilings and similar finishes, coordinate installation of these items before ceiling installation.
- I. The drawings indicate only the approximate locations of rough-ins and may not indicate complete connection requirements. Prior to progressing with any work or rough-ins the Contractor shall obtain all equipment rough-in requirements and information from the equipment supplier, manufacturer or from the respective trades furnishing the equipment or with Architect, to complete the installation in a neat and workmanship-like manner.
- J. Scaled and figured locations are approximate only. Before proceeding with work, carefully check and verify with building dimensions on architectural drawings, and be responsible for properly fitting equipment and materials together and to the structure in spaces provided.
- K. Drawings are essentially diagrammatic and indicate the general arrangement of equipment. Many offsets, bends, pull boxes, special fittings, etc. may be required which are not indicated. Carefully study drawings and premises in order to determine best methods, exact locations, conduit routes, building obstructions, etc., to install apparatus and equipment. Install apparatus and equipment in manner and locations to avoid obstructions, preserve headroom, and keep openings and passageways clear.
- L. Where located adjacent and opposite side of the same wall, outlet boxes shall not be placed back to back, nor shall extension rings be used in place of double boxes, all to limit sound transmission between rooms. Provide short horizontal nipple between adjacent outlet boxes, which shall have depth sufficient to maintain wall coverage in rear by masonry material.
- M. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- N. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

1.7 BASIC REQUIREMENTS FOR SERVING UTILITY COMPANIES

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner / Owner's Representative no fewer than 5 working days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's/Owner Representative's written permission.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

2.2 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.
- C. Slotted-Steel Channel Supports: Flange edges turned toward web, and 9/16-inch- (14-mm-) diameter slotted holes at a maximum of 2 inches o.c., in webs.
- D. Slotted-Steel Channel Supports: Comply with Division 5 Section "Metal Fabrications" for slotted channel framing.
 - 1. Channel Thickness: Selected to suit structural loading.
 - 2. Fittings and Accessories: Products of the same manufacturer as channel supports.
- E. Nonmetallic Channel and Angle Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least one surface.
 - 1. Fittings and Accessories: Products of the same manufacturer as channels and angles.
 - 2. Fittings and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
- F. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
- G. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain end.
- H. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.
- I. Expansion Anchors: Carbon-steel wedge or sleeve type.
- J. Toggle Bolts: All-steel springhead type.
- K. Powder-Driven Threaded Studs: Heat-treated steel.
- 2.3 ELECTRICAL IDENTIFICATION
 - A. Identification Devices: A single type of identification product for each application category. Use colors prescribed by ANSI A13.1, NFPA 70, and these Specifications.

- B. Raceway and Cable Labels: Comply with ANSI A13.1, Table 3, for minimum size of letters for legend and minimum length of color field for each raceway and cable size.
 - 1. Type: Preprinted, flexible, self-adhesive, vinyl. Legend is overlaminated with a clear, weather- and chemical-resistant coating.
 - 2. Color: Black letters on orange background.
 - 3. Legend: Indicates voltage.
- C. Colored Adhesive Marking Tape for Raceways, Wires, and Cables: Self-adhesive vinyl tape, not less than 1 inch wide by 3 mils thick.
- D. Underground Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape with the following features:
 - 1. Not less than 6 inches wide by 4 mils thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend that indicates type of underground line.
- E. Tape Markers for Wire: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- F. Color-Coding Cable Ties: Type 6/6 nylon, self-locking type. Colors to suit coding scheme.
- G. Engraved-Plastic Labels, Signs, and Instruction Plates: Engraving stock, melamine plastic laminate punched or drilled for mechanical fasteners 1/16-inch (1.6-mm) minimum thickness for signs up to 20 sq. in. (129 sq. cm) and 1/8-inch (3.2-mm) minimum thickness for larger sizes.
 - 1. Emergency power: white letters on red backgrounds.
- H. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32 stainless-steel machine screws with nuts and flat and lock washers. Applying the nameplates by self-adhesive only will be unacceptable.

2.4 CONCRETE BASES AND HOUSEKEEPING PADS

- A. The Division-26 Contractor shall be responsible to coordinate the final and actual sizes of the concrete pole bases and concrete housekeeping pads
- B. Concrete Forms and Reinforcement Materials: As specified in Division 3 Section "Cast-in-Place Concrete."
- C. Concrete: 3000-psi (20.7-MPa), 28-day compressive strength as specified in Division 3 Section "Cast-in-Place Concrete."

2.5 TOUCHUP PAINT

- A. For Equipment: Equipment manufacturer's paint selected to match installed equipment finish.
- B. Galvanized Surfaces: Zinc-rich paint recommended by item manufacturer.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Unless noted otherwise on the drawings, measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting devices.
- B. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- D. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables and wireways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 4 inches above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 ELECTRICAL SUPPORTING DEVICE APPLICATION

- A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, U-channel system components.
- B. Dry Locations: Steel materials.
- C. Support Clamps for PVC Raceways: Click-type clamp system.
- D. Selection of Supports: Comply with manufacturer's written instructions.
- E. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four; minimum of 200-lb design load.

3.6 SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
- B. Install individual and multiple raceway hangers and riser clamps to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.
- D. Size supports for multiple raceway installations so capacity can be increased by a 25 percent minimum in the future.

- E. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- F. Install 1/4-inch-diameter or larger threaded steel hanger rods, unless otherwise indicated.
- G. Spring-steel fasteners specifically designed for supporting single conduits or tubing may be used instead of malleable-iron hangers for 1-1/2-inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings and for fastening raceways to slotted channel and angle supports.
- H. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- I. Simultaneously install vertical conductor supports with conductors.
- J. Separately support cast boxes that are threaded to raceways and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If bar hangers are used, attach bar to raceways on opposite sides of the box and support the raceway with an approved fastener not more than 24 inches (610 mm) from the box.
- K. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength.
- L. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and raceway penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.
- M. Securely fasten electrical items and their supports to the building structure, unless otherwise indicated. Perform fastening according to the following unless other fastening methods are indicated:
 - 1. Wood: Fasten with wood screws or screw-type nails.
 - 2. Masonry: Toggle bolts on hollow masonry units and expansion bolts on solid masonry units.
 - 3. New Concrete: Concrete inserts with machine screws and bolts.
 - 4. Existing Concrete: Expansion bolts.
 - 5. Instead of expansion bolts, threaded studs driven by a powder charge and provided with lock washers may be used in existing concrete.
 - 6. Steel: Welded threaded studs or spring-tension clamps on steel.
 - a. Field Welding: Comply with AWS D1.1.
 - 7. Welding to steel structure may be used only for threaded studs, not for conduits, pipe straps, or other items.
 - 8. Light Steel: Sheet-metal screws.
 - 9. Fasteners: Select so the load applied to each fastener does not exceed 25 percent of its proof-test load.

3.7 IDENTIFICATION MATERIALS AND DEVICES

A. Install at locations for most convenient viewing without interference with operation and maintenance of equipment.

- B. Coordinate the final nomenclatures, names, abbreviations, colors, and other designations used for electrical identification. Provide permanent identification for the following electrical equipment using consistent materials and designations throughout the entire project:
 - 1. Switchboards and each protective device contained in the switchboard.
 - 2. Panelboards, electrical cabinets, and enclosures.
 - 3. Transformers.
 - 4. Motor Controllers.
 - 5. Enclosed Switches.
 - 6. As indicated on the Drawings.
 - 7. Devices (Refer to 262726, 2.1.C.11)
- C. Tag or label conductors as follows:
 - 1. Multiple Circuits: Where multiple circuits are present in the same box or enclosure, label each conductor or cable using tube markers at terminations and at intermediate locations where conductors appear in wiring boxes, troughs, and control cabinets. Use consistent letter/number conductor designations throughout on wire/cable tube markers.
- D. Tag and label circuits designated to be extended in the future. Identify source and circuit numbers in each cabinet, pull and junction box, and outlet box. Color-coding may be used for voltage and phase identification.
- E. Install continuous Underground Warning Tape during trench backfilling, for exterior underground lighting and power. Locate 6 to 8 inches (150 to 200 mm) below finished grade. If multiple systems (communications, controls, signal, etc) are installed in a common trench and does not exceed 16 inches (400 mm), overall, a single warning tape may be used
- F. Color-code 208/120-V system secondary service, feeder, and branch-circuit conductors throughout the secondary electrical system as follows:
 - 1. Phase A: Black.
 - 2. Phase B: Red.
 - 3. Phase C: Blue.
 - 4. Neutral: White.
 - 5. Ground: Green.
- G. Color-code 480/277-V system secondary service, feeder, and branch-circuit conductors throughout the secondary electrical system as follows:
 - 1. Phase A: Brown.
 - 2. Phase B: Orange.
 - 3. Phase C: Yellow.
 - 4. Neutral: White with a colored stripe or gray.
 - 5. Ground: Green.
- H. Install warning, caution, and instruction signs where required to comply with 29 CFR, Chapter XVII, Part 1910.145, and where needed to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.

3.8 CONCRETE BASES

A. Construct concrete bases for equipment indicated. Follow supported equipment manufacturer's anchorage recommendations and setting templates for anchor-bolt and tie locations, unless otherwise indicated. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.9 DEMOLITION

- A. All temporary and remodeling work shall be considered a part of this contract. This shall include all items, material or equipment and labor necessary to meet the requirements and intent of the project.
- B. Prior to submitting bid proposal, the Contractor shall have had visited and examined the construction site. He shall be familiar with all existing conditions under which he will have to operate and which will in any way affect the work under this contract. No subsequent allowance will be made in this connection in behalf of the contractor for any error or negligence on his part.
- C. Certain remodeling of the existing electrical facilities will be required. Existing conduit runs are generally not shown, although an attempt has been made to show some existing conditions, from which information has been taken in regard to existing record drawings pertaining to this particular project. The drawings showing location of existing equipment light fixtures, etc., are approximate only (field verify).
- D. Existing wiring (lighting, power, low-voltage, special systems, etc.) which may be disturbed and interrupted during construction, of which the wiring continuity is to be maintained, shall be restored to its original operating condition. Although an attempt has been made on the plans to indicate where some of these conditions may most likely occur, the Contractor shall comply where it is necessary to extend new conduits and wiring, installation of new junction boxes, etc. to provide complete continuity of each electrical system affected.
- E. Where existing electrical equipment, pole lighting fixtures, etc. are removed and the feeder or circuiting is not intended to be re-used, all conduit and wiring shall be completely removed Where existing conduit is not being re-used, abandon the conduit and remove conduit completely. Where it is impossible to remove conduit, such as in masonry walls, underground, concrete floors, etc. it shall be cut off flush with the wall or floor and capped or plugged. For underground conduits, dig down much as possible, minimum 12" below grade and cut the conduit
- F. Where copper conductors, equipment/material, etc. is designated to be removed and is deemed to be salvageable by the Owner, the Contractor shall properly transport and store the items as directed by the Owner.
- G. Prior to progressing with any new installation or rough-ins, the Contractor shall study the drawings and carefully examine all existing conditions and obstructions, to determine the best method of installation and conduit routing. All conduits shall be underground and concealed inside buildings. The installation will require many offsets, bends, J-boxes, pullboxes, special fittings, etc. which are not shown, but shall be installed in accordance to the N.E.C. and in a neat and workmanship-like manner.

H. All electrical connections requiring an outage shall be made during an approved time limit. Changeovers shall be as short a duration as possible and shall not interfere with normal operation of the Owner's facilities. Notice shall be required in advance of a shutdown for any electrical circuit changeover, and such a changeover shall be done during hours as directed by Owner. Work shall be scheduled so that at no time will any electrical power be out of service. Provide necessary temporary feeders from an owner furnished generator to accomplish this requirement.

3.10 EXCAVATION AND BACKFILL

- A. Where excavation and trenching disturb existing conditions, the contractor shall be responsible to restore the surroundings to their original condition or better, so that the appearance, landscaping, quality and condition of surfaces or finishes match adjacent areas.
- B. Establish requirements for trench shoring and bracing to comply with codes, authorities and safety. Maintain shoring and bracing in excavations regardless of time period the excavations will be open. Remove shoring and bracing when no longer required.
- C. Excavate by hand at areas within drip-line of large trees. Protect the root system from damage and dry-out. Maintain moist conditions for root system and cover exposed roots with burlap. Paint root cuts of 1 inch in diameter and larger with emulsified asphalt tree paint.
- D. Trenches: Excavate trenches for electrical installations as follows:
 - 1. Excavate trenches to the uniform width, sufficiently wide to provide ample working space and a minimum of 6 to 9 inches clearance on both sides of raceways and equipment.
 - 2. Excavate trenches to depth indicated or required.
 - 3. Limit the length of open trenches to which conduit installations can be made and the trench backfilled within the same day.
 - 4. Where rock is encountered, carry excavation below required elevation and backfill with a layer of sand prior to installation of raceways and equipment. Provide a minimum of 6 inches of sand cushion between rock bearing surface and electrical installations.
- E. Backfill: Place soil materials in layers to required subgrade elevations for each area classification listed below, using materials specified in Division 2 of the Specifications.
 - 1. Under walks and pavements, use a combination of subbase materials and excavated or borrowed materials.
 - 2. Under building slabs, use drainage fill materials.
 - 3. Under piping and equipment, use subbase materials where required over rock bearing surface and for correction of unauthorized excavation.
 - 4. For raceways less than 30 inches below surface of roadways, provide 4-inch-thick concrete base slab support. After installation of raceways, provide a 4-inch thick concrete encasement (sides and top) prior to backfilling and placement of roadway subbase.
 - 5. Other areas, use excavated or borrowed materials.

- F. Compaction: Control soil compaction during construction, providing minimum percentage of density specified for each area classification indicated below.
 - 1. Before compaction, moisten or aerate each layer as necessary to provide optimum moisture content. Compact each layer to required percentage of maximum dry density or relative dry density for each area classification specified below. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Place backfill and fill materials evenly adjacent to structures, piping, and equipment to required elevations. Prevent displacement of raceways and equipment by carrying material uniformly around them to approximately same elevation in each lift.
 - 3. Areas Under Structures, Building Slabs and Steps, Pavements: Compact top 12 inches of subgrade and each layer of backfill or fill material to 90 percent maximum density for cohesive material, or 95 percent relative density for cohesionless material.
 - 4. Areas Under Walkways: Compact top 6 inches of subgrade and each layer of backfill or fill material to 90 percent maximum density for cohesive material, or 95 percent relative density for cohesionless material.
 - 5. Other Areas: Compact top 6 inches of subgrade and each layer of backfill or fill material to 85 percent maximum density for cohesive soils, and 90 percent relative density for cohesionless soils.
- G. Subsidence: Where subsidence occurs at electrical installation excavations during the period 12 months after Substantial Completion, remove surface treatment (i.e., pavement, lawn, or other finish), add backfill material, compact to specified conditions, replace surface treatment, and restore to its original condition.
- H. Conditions Affecting Excavations:
 - 1. Existing conduits, pipes, utility lines, tanks, equipment, or other obstructions which are to remain, whether underground, concealed, or exposed may not be indicated on drawings. Locate such obstructions prior to start of work so as to route and install all new work to avoid these obstructions.
 - 2. Maintain and protect existing building utilities and services. Repair or replace these utilities and services at no cost to Owner where damage has been done during course of construction.
 - 3. Protect structures, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by excavation operations.
- I. Site Information: Subsurface conditions were investigated by other Divisions during the design of the Project. Reports of these investigations are available for information only; data in the reports are not intended as representations or warranties of accuracy or continuity of conditions. The Owner will not be responsible for interpretations or conclusions drawn from this information.

3.11 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled craftsmen of trades involved.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled craftsmen of trades involved.

3.12 FIELD QUALITY CONTROL

- A. Inspect installed components for damage and faulty work, including the following:
 - 1. Supporting devices for electrical components.
 - 2. Electrical identification.
 - 3. Concrete bases.
 - 4. Cutting and patching for electrical construction.
 - 5. Touchup painting.

3.13 REFINISHING AND TOUCHUP PAINTING

- A. Refinish and touch up paint. Paint materials and application requirements are specified in Division 9 Section "Painting."
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 4. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.14 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION

SECTION 26 0519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
 - 3. Sleeves and sleeve seals for cables.
- B. Related Sections include the following:
 1. Division 26 Section "Electrical Special Inspections and Testing."

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Qualification Data: For testing agency.
- C. Field quality-control test reports.
- 1.4 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with NFPA 70.

1.5 COORDINATION

- A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- B. Coordinate layout and installation of cables with other installations.
- C. Revise locations and elevations from those indicated, as required to suit field conditions and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alcan Products Corporation; Alcan Cable Division.
 - 2. American Insulated Wire Corp.; a Leviton Company.
 - 3. General Cable Corporation.
 - 4. Senator Wire & Cable Company.
 - 5. Southwire Company.
 - 6. Carol Cable Co., Inc.
- B. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70.
- D. Multiconductor Cable: Comply with NEMA WC 70.
- 2.2 CONNECTORS AND SPLICES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. 3M; Electrical Products Division.
 - 5. Tyco Electronics Corp.
 - B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.

- 2. Calpico, Inc.
- 3. Metraflex Co.
- 4. Pipeline Seal and Insulator, Inc.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper, solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger. Where conductors are increased for voltage drop, the final terminations to devices shall be #12 AWG solid pigtails
- C. Minimum wire size shall be No. 12 AWG, except No. 14 AWG shall be permitted for signal, pilot control circuits and fixture whips.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Operating Temperature: All conductors shall be 90 deg C.
 - B. #6 AWG and Smaller: Type THHN/THWN. All conductors exceeding 200' shall be XHHW.
 - C. #4 AWG and Larger: Type XHHW and XHHW-2.
 - D. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
 - E. Class 1 Control Circuits: Type THHN-THWN, in raceway.
 - F. Class 2 Control Circuits:
 - 1. Type THHN-THWN, in raceway
 - 2. Power-limited tray cable, in cable tray.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- B. Use the latest industry pulling techniques and equipment, including pulling machines, fish tape, cable, rope, and basket-weave wire/cable grips, etc. that will not damage cables or raceway. The following methods of pulling cable shall be grounds for immediate rejection of the cable(s):
 1. Tractor
 - 2. Automobile (Truck, Car, Etc.)
- C. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

- D. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Identify and color-code conductors and cables according to Section 26 0500, 3.7
- F. Three-Phase Wiring: A maximum of three phase conductors, each of a different phase, and one common neutral shall be installed per conduit homerun. Derating factors for additional phase conductors installed in the same conduit shall be applied per NEC 310-15(b)(2)
- G. Data circuit wiring : A maximum of three phase conductors, each of a different phase, and one #10AWG common neutral shall be installed per conduit homerun.
- H. For 20 ampere 120 volt branch circuit homeruns that are longer than 75 feet, provide minimum #10 AWG conductor size, including the neutral and grounding conductor. Increase in size as required for a maximum of 3 percent voltage drop from panel to load.
- I. For 20 ampere 277 volt branch circuit homeruns that are longer than 175 feet, provide minimum #10 AWG conductor size. Increase in size as required for a maximum of 3 percent voltage drop from panel to load.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

- F. Cut sleeves to length for mounting flush with both wall surfaces.
- G. Extend sleeves installed in floors 2 inches above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry.
- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.
- M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground exterior-wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

END OF SECTION

SECTION 26 0526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 DEFINITIONS
 - A. Welding For the purpose of this specification unless noted otherwise, welding shall be defined as exothermic welded connections.

1.3 SUMMARY

- A. This Section includes methods and materials for grounding systems and equipment.
- B. Related Sections include the following:
 - 1. Division 26 "Electrical Special Inspections and Testing."
 - 2. Division 26 "Underground Ducts and Raceways for Electrical Systems."

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Conductor: No. 4 AWG and larger shall be stranded conductors, No. 6 AWG and smaller shall be solid conductors.
 - 5. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 6. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Rectangular bars of annealed copper, minimum 1/4 by 2 inches in cross section. with insulators.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Set screws in neutral and ground busses shall be of the shoulder-less type to ensure proper pressure on conductors.

2.3 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel; 3/4 inch in diameter by 8 feet.
- B. Concrete Encased Electrode (Ufer): No. 4 AWG bare copper conductor in building foundation or footings.
- C. Metal Underground Water Pipe: A metal underground water pipe in direct contact with the earth for 10 ft (3.05 m) or more (including any metal well casing effectively bonded to the pipe) and electrically continuous (or made electrically continuous by bonding around insulating joints or sections or insulating pipe) to the points of connection of the grounding electrode conductor and the bonding conductors.
- D. Metal Frame of the Building or Structure: The metal frame of the building or structure, where effectively grounded.
- E. Area Pole Lighting: Provide ground rod or loop coil of bare copper.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.
- C. Grounding Bus: Install in Security Electronics and Special Systems rooms and elsewhere as indicated.
 - 1. Install bus on insulated spacers 1 inch minimum from wall, a minimum 6 inches above finished floor, unless otherwise indicated.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

- 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
- 3. Connections to Ground Rods at Test Wells: Bolted connectors.
- 4. Connections to Structural Steel: Welded connectors.
 - a. Restore fire-proofing, paint and finish to original conditions.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until the top is at least 2-inches below finished grade, unless indicated or specified elsewhere.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make exothermic connections without exposing steel or damaging coating, if any.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- D. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors in conduit from the main Service Entrance Switchboard ground bus to the main metal water service entrance into the building. At the main water service grounding connection, connect the grounding conductor using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
- F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.

- G. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete.

3.4 GRADING AND PLANTING

A. Restore surface features, including vegetation, at areas disturbed by Work of this Section. Reestablish original grades, unless otherwise indicated. If sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other activities to their original condition. Include application of topsoil, fertilizer, lime, seed, sod, sprig, and mulch. Comply with Division 32 Section "Landscaping." Maintain restored surfaces. Restore disturbed paving as indicated.

END OF SECTION
SECTION 26 0533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 07 Section "Penetration Firestopping" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 - 2. Division 26 Section "Common Work Results for Electrical" for supports, anchors, and identification products.
 - 3. Division 26 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings.

1.3 DEFINITIONS

- A. EMT : Electrical metallic tubing
- B. FMC : Flexible metal conduit
- C. IMC : Intermediate metal conduit
- D. LFMC : Liquidtight flexible metal conduit
- E. LFNC : Liquidtight flexible nonmetallic conduit
- F. RMC : Rigid Metal Conduit (galvanized-zinc coated)
- G. RNC : Rigid nonmetallic conduit

1.4 SUBMITTALS

- A. Product Data: For wireways, enclosure / cabinets, floor boxes and pullboxes
- 1.5 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Subject to compliance with requirements, provide products by one of the following manufacturers specified :
 - 1. AFC Cable Systems, Inc.
 - 2. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 3. O-Z Gedney; a unit of General Signal.
 - 4. Wheatland Tube Company.
- B. RMC : Rigid Steel Conduit, ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.
- E. EMT: ANSI C80.3.
- F. FMC: Zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket.
- H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886.
 - 2. Fitting types for EMT:
 - a. Steel set-screw.
 - b. Steel compression.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.
- I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

- A. Subject to compliance with requirements, provide products by one of the following manufacturers specified :
 - 1. AFC Cable Systems, Inc.
 - 2. CANTEX Inc.
 - 3. CertainTeed Corp.; Pipe & Plastics Group.
 - 4. Carlon Electrical Products.
 - 5. RACO; a Hubbell Company.
 - 6. Thomas & Betts Corporation.
- B. ENT: NEMA TC 13.

- C. RNC: NEMA TC 2, Schedule 40 and Schedule 80 unless otherwise indicated.
- D. LFNC: UL 1660.
- E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.
- F. Fittings for LFNC: UL 514B.

2.3 NON CIRCULAR - METAL WIREWAYS

- A. Subject to compliance with requirements, provide products by one of the following manufacturers specified :
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1 or Type 3R suitable for the location
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Continuous hinged at top and secured with front security screws at sides and bottom
- E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. Subject to compliance with requirements, provide products by one of the following specified manufacturers specified ;
 - 1. Cooper Crouse-Hinds
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman.
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. O-Z/Gedney;
 - 7. RACO; a Hubbell Company.
 - 8. Thomas & Betts Corporation.
 - 9. Walker Systems, Inc.; Wiremold Company (The).
 - 10. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy (unless noted otherwise), Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- E. Metal Floor Boxes: Cast metal, fully adjustable, rectangular.

- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, galvanized, cast iron with gasketed cover.
- H. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic.
- I. Cabinets:
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

2.5 PRECAST CONCRETE PULL BOXES

- A. Subject to compliance with requirements, provide products by one of the following specified manufacturers :
 - 1. Christy Concrete Products.
 - 2. Oldcastle Precast Group.
 - 3. Utility Concrete Products, LLC.
 - 4. Utility Vault Co.
- B. Comply with ASTM C 858 for design and manufacturing processes.
- C. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of pullbox.
 - 1. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 - 2. Cover: Removable, rated for vehicle traffic, secured with four 1/2-inch (13 mm) penta head screws. Cover legend shall read 'ELEC-600V' for power.
 - 3. Pulling Eyes: One 2 inches (50 mm) at either end of duct entrances.
 - 4. Drainholes: Six 1-inch (25-mm) drain holes in bottom.
 - 5. Configuration: Units shall be designed for flush burial and have closed bottom, unless otherwise indicated.
 - 6. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching conduits.
 - a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of pullbox but close enough to corners to facilitate racking of cables on walls.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 - 1. Exposed Conduit: RMC or IMC.
 - 2. Concealed Conduit, Aboveground: RMC, IMC or EMT.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Physical Damage: RMC or IMC. Includes raceways in the following locations:
 - a. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - b. Equipment rooms (Electrical, Mechanical, Security Electronics, Communications, etc)
 - c. Inmate Areas: From finished floor up to 10'-0" above finished floor levels.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers, and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: RMC or IMC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. RMC and IMC : Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.

3.2 INSTALLATION

- A. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- B. Complete raceway installation before starting conductor installation.
- C. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- D. Stub-up Connections:
 - 1. All conduits that stub-up/down through concrete slabs and finished floors shall be wrapped IMC or RSC and extended at least 6" above finished floor before conversion to EMT.

- 2. Other than in a wall or under freestanding equipment such as switchboards, cabinets, transformers, etc., all other conduit stub-ups through concrete slabs and finished floors shall be provided with threaded steel coupling in slab, flush with top of floor level.
- 3. When ready for final connections to surface panelboards, surface cabinets / equipment, free-standing outlets / equipment, motor connections or outlets within casework / millwork, extend with IMC or RSC at least 6 inches above finished floor before any conversion to other type(s) of conduit. Do not extend conduit(s) above finished floor during construction where subject to damage. Where equipment connections are not made under this contract, install screwdriver-operated threaded flush plugs flush with floor.
- 4. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- E. Install no more than the equivalent of four 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
- F. Conceal conduits within finished walls, ceilings, and floors, unless otherwise indicated.
- G. In areas accessible to inmates where the conduits cannot be concealed, use IMC conduit from finished floor up to no less than 10'-0" above that floor level. All these conduits shall be provided with security caulking.
- H. Bends:
 - 1. Make bends and offsets so the inside diameter is not effectively reduced. Keep the legs of a bend in the same plane and the straight legs of offsets parallel.
 - 2. Vertical Bends: All vertical bends (90° elbows) must be Schedule 80 PVC. Extend from elbow with IMC or RSC wrapped, when penetrating through floor slabs and through grade. Use of PVC extended from the steel bend will be unacceptable. Arrange so curved portion of bend is not visible above finished grade or finished floor.
 - 3. Horizontal Bends: Where underground conduit runs exceed 100 feet, all horizontal bends below slab or underground shall be Schedule 80 PVC.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
- J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors.
- L. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.

- M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces, including food service refrigerated walk-in units.
 - 2. Where conduits enter or leave hazardous locations.
 - 3. Where otherwise required by NFPA 70.
- N. Expansion Joints:
 - 1. Exposed Conduits 3 Inches and Larger, That Are Secured to Building Construction on Opposite Sides of a Building Expansion Joint: Provide with expansion fittings. The fittings shall allow 8" conduit movement (4" in either direction). The fittings shall be installed in accordance with the manufacturer's recommendations.
 - 2. Exposed Conduits Smaller than 3 Inches: Provide with junction boxes on both sides of the expansion joint, and connected by 15 inches of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of the flexible conduit installation, expansion fittings may be installed as specified above.
 - 3. Conduits Contained Within Concrete and Masonry Walls: Provide with deflection / expansion fittings. The fittings shall be concretetight and watertight. The fittings shall be suitable for use with PVC conduit by using adapters in each end. Install in accordance with the manufacturer's recommendations.
- O. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block and install box flush with surface of wall.
- Q. Set metal floor boxes level and flush with finished floor surface.
- R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
- S. Backboxes shall not be installed back-to-back in non-rated walls. Provide 6-inch separation minimum unless otherwise noted.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Underground conduits:
 - 1. Except for the Serving Electrical Utility conduits, all conduits 2" and greater, located outside and beyond the building perimeter shall be covered continuous with lean concrete topping minimum 4" thick and a minimum of 24" below finished area or grade unless indicated or detailed on drawings to be deeper
 - 2. Horizontal and vertical separations between each conduit shall be maintained by installing spacers specifically designed and manufactured for use with non-metallic conduit. The spacers are to be high-impact with the tongue and groove feature for easy installation. Install at no more than 10'-0" centers.

3. Concrete shall not be poured until conduits have been inspected by the Architect/Engineer.

3.4 INSTALLATION OF UNDERGROUND PULLBOXES

- A. Install pullboxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
- D. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.
- E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- F. Cut sleeves to length for mounting flush with both surfaces of walls.
- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.

- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.
- M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals.
- 3.6 SLEEVE-SEAL INSTALLATION
 - A. Install to seal underground, exterior wall penetrations.
 - B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.8 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 26 0923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following lighting control devices:
 - 1. Time switches.
 - 2. Outdoor and indoor photoelectric switches.
 - 3. Lighting contactors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated in documents.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
 - 2. Lighting plan showing location, orientation, and coverage area of each sensor.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 OCCUPANCY SENSORS

A. Manufacturers : As a Basis-of-Design, the listed catalog numbers below are as manufactured by 'Watt Stopper'. Provide line voltage devices as follows:

- 1. Wall Switch Sensor : DW-100-I, Dual Technology, 277V, 0-1200W
- 2. Digital Time Wall Switch : TS-400-I, 277V, 0-1200W
- 3. Ceiling Sensor : DT-355 Dual Technology Line Voltage, 277V, 0-1200W, 360-degree area coverage

2.2 TIME SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. Intermatic, Inc.
 - 2. Paragon Electric Co.
 - 3. Square D
 - 4. TORK.
- B. Electronic Time Switches: Electronic, solid-state programmable units with alphanumeric display; complying with UL 917.
 - 1. Contact Configuration: SPST, DPST or DPDT.
 - 2. Contact Rating: 30-A inductive or resistive, 20-A ballast load, voltage as specified in documents.
 - 3. Programs: Minimum 2 channels; each channel shall be individually programmable with 8 on-off set points on a 24-hour schedule.
 - 4. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on any selected channel.
 - 5. Astronomic Time: Any selected channel.
 - 6. Battery Backup: For schedules and time clock.

2.3 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers :
 - 1. Intermatic, Inc.
 - 2. Paragon Electric Co.
 - 3. Square D
 - 4. TORK
- B. Description: Solid state, with SPST or DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of photocell to prevent fixed light sources from causing turn-off.
 - 2. Time Delay: 15-second minimum, to prevent false operation.
 - 3. Surge Protection: Metal-oxide varistor, complying with IEEE C62.41.1, IEEE C62.41.2, and IEEE 62.45 for Category A1 locations.
 - 4. Mounting: Twist lock complying with IEEE C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.4 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers :
 - 1. Allen-Bradley/Rockwell Automation.
 - 2. Eaton Electrical Inc.; Cutler-Hammer
 - 3. General Electric
 - 4. Siemens
 - 5. Square D
- B. Description: Electrically operated and electrically held, combination type with fusible switch, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices matching the NEMA type specified for the enclosure.

2.5 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 WIRING INSTALLATION

A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be ³/₄ inch.

3.2 IDENTIFICATION

- A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaries controlled by photoelectric sensors.
- B. Label time switches and contactors as indicated in documents.

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 - 2. Operational Test: Verify operation of each lighting control device, and adjust time delays.

B. Lighting control devices that fail tests and inspections are defective work.

END OF SECTION 26 0923

SECTION 26 2200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 - 1. Distribution transformers.
 - 2. Buck-boost transformers.
- B. Related Sections include the following:1. Division 26 Section "Electrical Special Inspections and Testing."

1.3 SUBMITTALS

- A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.
- 1.4 QUALITY ASSURANCE
 - A. Source Limitations: Obtain each transformer type through one source from a single manufacturer.
 - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - C. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.5 DELIVERY, STORAGE, AND HANDLING

A. If stored in areas subjected to weather, elevate the switchboards to prevent direct contact to earth or concrete slabs and cover transformers (minimum 20 mil plastic sheeting) to provide protection from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside transformers.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ACME Electric Corporation
 - 2. Eaton Electrical Inc.; Cutler-Hammer
 - 3. General Electric
 - 4. Siemens
 - 5. Square D

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Aluminum
 - 3. Coil Material : 15KVA and larger may be Aluminum

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- B. Cores: One leg per phase.
- C. Enclosure: Ventilated for indoor applications. Totally enclosed, nonventilated, NEMA 250, Type 3R for outdoor applications.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.
- D. Transformer Enclosure Finish: Comply with NEMA 250.1. Finish Color: ANSI 61 gray
- E. Taps for Transformers Smaller Than 3 kVA: One 5 percent tap above normal full capacity.
- F. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.

- G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.
- H. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
- I. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 - 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 - 2. Tested according to NEMA TP 2.
- J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- K. Electrostatic Shielding: Each K-rated transformer shall be provided with electrostatic shielding. Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.
- L. Wall Brackets: Manufacturer's standard brackets.
- M. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.
- 2.4 IDENTIFICATION DEVICES
 - A. Nameplates: Provide nameplate for each transformer. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems."
- 2.5 SOURCE QUALITY CONTROL
 - A. Test and inspect transformers according to IEEE C57.12.91.
 - B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
- B. Arrange indoor transformers to provide 6 inches clear spacing from any wall, switchboard or obstruction from each side and at the rear of the transformer for air circulation.
- C. Construct concrete housekeeping equipment pads for each transformer as follows:
 - 1. Coordinate size of equipment pad with actual physical size of unit(s) provided. Construct base no more than 1/2-inch larger in both directions than the overall dimensions of the supported unit. If transformer is to be set in line with other equipment, the pad shall be continuous to accommodate all the equipment line-up.
 - 2. Form concrete pads with framing lumber with form release compounds. Chamfer top edge and corners of pad.
 - 3. Place concrete and allow to cure before installation of units. Use Portland Cement conforming to ASTM C 150, 3,000 psi compressive strength, and normal weight aggregate.
 - 4. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions.
- D. Install all transformers with vibration isolators. Use 3/8 inch thick neoprene bearing pads anchored to pad with 3/8 inch x 3-3/4 inch minimum, steel set bolts at each corner.
- E. Flexible metal conduit connections may be used on transformers. Use liquid-tight for outdoors, in moist/humid locations, areas subject to waterspray, dripping oil, dripping grease, dripping water and in corrosive atmosphere.
- F. Provide underground connections to all floor-mounted transformers 45 KVA and larger.

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- D. Separately Derived Systems: Comply with NFPA 70 Article 250 requirements for connecting to grounding electrodes and for bonding requirements.

3.4 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.5 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION

SECTION 26 2413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 26 Section "Fuses."
 - 2. Division 26 Section "Transient Voltage Suppression."
 - 3. Division 26 Section "Electrical Special Inspections and Testing."

1.2 SUMMARY

A. This Section includes service and distribution switchboards rated 600 V and less.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFP: Ground-fault protection.
- C. TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

- A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and components. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Short-circuit current rating of switchboards and overcurrent protective devices.
 - d. Descriptive documentation of optional barriers specified for electrical insulation and isolation.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - f. Front elevation showing the arrangement of all overcurrent protective devices.

- C. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for switchboards and all installed components.
 - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 3. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain switchboards through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA PB 2, "Deadfront Distribution Switchboards."
- D. Comply with NFPA 70.
- E. Codes and Standards:
 - 1. Electrical Code Compliance: Comply with applicable local code requirements of the authority having jurisdiction as applicable to installation, and construction of service-entrances.
 - 2. NEMA Compliance: Comply with applicable construction and installation requirements for service-entrance equipment and accessories.
 - 3. UL Compliance: Comply with construction and installation requirements of UL standards for service-entrance equipment and accessories.
 - 4. Provide service-entrance equipment and accessories which are UL-listed and labeled, and marked, "SUITABLE FOR USE AS SERVICE EQUIPMENT (SUSE)."
 - 5. IEEE Compliance: Comply with applicable requirements of IEEE Std 241 pertaining to service entrances.
 - 6. Comply with ANSI installation requirements for aboveground service-entrance conductors.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver in sections or lengths that can be moved past obstructions in delivery path.
- B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to dirt, fumes, water, corrosive substances, and physical damage.
- C. If stored in areas subjected to weather, elevate the switchboards to prevent direct contact to earth or concrete slabs and cover switchboards (minimum 20 mil plastic sheeting) to provide protection from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside switchboards; install electric heating (250 W per section) to prevent condensation.
- D. Handle switchboards according to NEMA PB 2.1 and NECA 400.

1.7 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer: Subject to compliance with requirements, provide the products by one of the following:
 - 1. Cutler-Hammer.
 - 2. General Electric Co.
 - 3. Siemens.
 - 4. Square D.
- B. Front-Connected, Front-Accessible Switchboard: All sections shall be front and rear aligned.
- C. Enclosure: Steel, NEMA 250, Type 1 or 3R where installed outdoors.
- D. Enclosure Finish for Outdoor Units: Factory-applied finish in manufacturer's standard color, undersurfaces treated with corrosion-resistant undercoating.
- E. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- F. Provide space for non-utility metering / monitoring meter.
- G. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- H. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- I. Buses and Connections: Three phase, four wire, unless otherwise indicated.
 - 1. Phase- and Neutral-Bus Material: Tin-plated aluminum with copper feeder circuit breaker line connections.
 - 2. Load Terminals: Insulated, rigidly braced, silver-plated, copper runback bus extensions equipped with pressure connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full ampere rating of circuit-breaker position.
 - 3. Ground Bus: 1/4-by-2-inch- (6-by-50-mm-) minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 - 4. Contact Surfaces of Buses: Silver plated.

- 5. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extension.
- 6. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- 7. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus are braced.
- 8. Each section(s) shall be provided with maximum vertical height phase bussing available or more unit for breaker mounting space within one full height switchboard enclosure. The remainder of the unused bused space shall be provided with blank filler plates ready for future use.
- 9. Main Phase Buses and Neutral Bus: The ampere bus ratings in its entire length shall not be reduced or tapered for both the horizontal and vertical busing in each switchboard enclosure.
- J. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
- K. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating: 105 deg C.

2.2 SERVICE-ENTRANCE EQUIPMENT SECTION

- A. General: Provide service-entrance equipment and accessories; of types, sizes, ratings and electrical characteristics indicated, which comply with manufacturer's standard materials, design and construction in accordance with published product information, and as required for complete installation; and as herein specified.
- B. TVSS (Transient Voltage Surge Suppression): Provide TVSS system integral within the service equipment which shall be factory installed and completely connected. The component shall be part of the equipment's U.L. labeling. Refer to Division 26 Section "Transient Voltage Suppression."

2.3 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Quick-make, quick-break toggle mechanism with inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: provide for circuit-breaker frame sizes 250 A and larger magnetic trip element with front-mounted, field-adjustable trip setting.
 - 3. Electronic trip-unit circuit breakers, provide for circuit-breaker frame sizes 600A and larger: Shall have RMS sensing, field-replaceable rating plug, and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
 - 4. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.

- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - 2. Application Listing: Appropriate for application provide type HACR for heating, airconditioning and refrigerating equipment.
 - 3. Shunt Trip: When specified or required, provide 120-V trip coil energized from a separate circuit, set to trip at 75 percent of rated voltage.

2.4 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install switchboards and accessories according to NEMA PB 2.1 and NECA 40.
- B. Provide concrete housekeeping base and anchor the switchboards level on the concrete base. The concrete materials and installation requirements are specified in Division 03.
 - 1. For switchboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 2. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 3. Install anchor bolts to elevations required for proper attachment to switchboards.
 - 4. Coordinate and receive approval of Service Entrance Switchboard's concrete base with serving utility.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
- D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- E. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
 - 2. Settings shall be based on "Coordination Study" as defined in this Section.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Identification for Electrical Systems."

3.4 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories. Refer to Division 01.

END OF SECTION

SECTION 26 2416 - PANELBOARDS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Related Sections include the following:
 - 1. Division 26 Section "Transient Voltage Suppression."
 - 2. Division 26 Section "Electrical Special Inspections and Testing."

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance : The Panelboards shall withstand the effects of earthquake motions determined by IBC Seismic Design Category 'C'

1.4 SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 6. Where applicable, include wiring diagrams for power, signal, and control wiring.
 - 7. Terminal lug sizes for conductors.
 - 8. All the information for the circuit breaker numbering arrangement shall be obtained from the panel schedules and shall reflect the actual circuit breaker arrangement as shown on the documents. All odd circuit numbering on the left and all even circuit numbering on the right.
 - 9. If the circuit breaker arrangements have been adjusted and deviate from the branch circuit numbering as shown on the documents, the submittals will be rejected
 - 10. The indication of the breaker sizes and quantities only, for the various circuit breakers in each panelboard will be unacceptable.
- C. Seismic Qualification Certificates : Submit certification that the panelboards overcurrent protective devices, accessories and components will withstand the determined seismic forces. Include the following:

- 1. Basis for Certification : Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Dimensioned Outlined Drawings of Equipment Unit : Identify center of gravity and locate and describe mounting and anchorage provisions
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements
- D. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Handle and prepare panelboards for installation according to NEMA PB 1.
 - B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to drywall dust, dirt, paint, fumes, water, corrosive substances and physical damage.

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

A. Keys: Six spares for each different type of panelboard locks for each building.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. All products provided under this section shall be of the same manufacturer for the products that are provided under Section 26 2413 Switchboards. Subject to compliance with these requirements, provide panelboard products by one of the following manufacturers:
 - 1. Eaton Corporation; Cutler-Hammer.
 - 2. General Electric Co.
 - 3. Siemens.
 - 4. Square D.

2.2 GENERAL REQUIREMENTS

- A. Enclosures: Flush and surface mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Door-in-Door Trim Fronts:
 - a. Trim front steel shall meet strength and rigidity requirements per UL 50 standards.
 - b. Door-in-door trim front shall both be hinged as 1-piece, available in flush, or surface mount. Trim front door shall have rounded corners and edges free of burrs.
 - c. Locks shall be cylindrical tumbler type with larger enclosures requiring sliding vault locks with 3-point latching. All lock assemblies shall be keyed alike.
 - 3. Finishes:
 - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
- B. Incoming Mains Location: Top and bottom
 - 1. Main breakers shall not be mounted as part of the branch circuit bussed space or as a back-feed unit utilizing the available branch circuit bussed space
- C. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- D. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Dual rated for aluminum and copper.
 - 2. Main and Neutral Lugs: Mechanical type.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

F. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.3 NON-LINEAR PANELBOARDS

- A. Buses:
 - 1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
 - 2. Copper equipment and isolated ground buses.
 - 3. Extra-Capacity Neutral Buses and Lugs: Rated 200 percent of phase bus and lugs.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- B. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
- C. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Quick-make, quick-break toggle mechanism with inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers, provide for circuit-breaker frame sizes 250 A and larger: Magnetic trip element with front-mounted, field-adjustable trip setting.
 - 3. The main circuit breaker shall not be mounted as a branch or backfeed unit utilizing the available branch bussed space.
 - 4. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (5-mA trip).
 - 5. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - d. Shunt Trip: Where shunt-trip is applicable and indicated on the documents, provide 120V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - e. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to liquid saturation.

- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install panelboards and accessories according to NEMA PB 1.1.
- B. Mount panelboard so that the operating handle of the highest possible circuit breaker that may be installed is not more than 6'-6" above the floor or working platform.
- C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- D. Install overcurrent protective devices and controllers not already factory installed.
- E. Install filler plates in unused spaces.
- F. Arrange conductors in panelboard gutters into groups, all bundled and wrapped with wire ties.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
- B. Create a circuit directory to indicate installed circuit loads; incorporate Owner's final room designations. Provide typewritten circuit directories; handwritten directories are not acceptable. The final directories shall include all field changes, revisions, etc.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 ADJUSTING

- A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges in compliance to the Coordination Study.

END OF SECTION

SECTION 26 2726 - WIRING DEVICES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Twist-locking receptacles and cord caps.
 - 3. Toggle switches and wall-box dimmers.
 - 4. Pendant cord-connector devices.
 - 5. Cord and plug sets.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: At the discretion of the architect/engineer, provide one for each type of device and wall plate specified, in each color specified.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain all wiring devices and associated wall plates from a single manufacturer and one source.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. To ensure a uniform installation, all switches, receptacles, device plates and other related products furnished under this Section shall be provided by only one of the approved manufacturers. Mixing of manufacturers will be rejected. Subject to compliance with these requirements, provide products by one of the following manufacturers:
 - 1. Hubbell Incorporated
 - 2. Leviton
 - 3. Pass & Seymour/Legrand

2.2 STRAIGHT BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498. Specification Grade, heavy-duty, self-grounding brass wiring devices in types, characteristics, and electrical ratings for applications indicated.
- B. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

2.3 GFCI DEVICES

- A. General Description: Straight blade and blank-face, non-feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.
- 2.4 TWIST-LOCKING RECEPTACLES
 - A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration as indicated on documents and UL 498. Unless noted otherwise, contractor to provide matching cord cap.

2.5 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with jacket, green-insulated grounding conductor.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.6 TOGGLE SWITCHES

- A. Comply with NEMA WD 1 and UL 20.
- B. Single and Double Pole Switches: Heavy duty, quiet type, UL listed, rated for 20A, 120/277 VAC.

- C. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Description: Single pole, cam type locking switches. The pin-type locking will be unacceptable.
- D. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

2.7 WALL-BOX DIMMERS

- A. Control: Continuously adjustable slider with single-pole or three-way switching. Comply with UL 1472.
- B. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W dimmers shall require no derating when ganged with other devices.
- C. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.8 WALL PLATES

- A. Provide plates with the following construction features:
 - 1. Nylon, high impact smooth face.
 - 2. Security type, 14 gauge, brushed steel.
 - 3. Steel plate, galvanized.
- B. Provide high-impact nylon wall plates in all areas.
 - 1. Except within the Administration areas, all wall plates shall be secured with Pinned Torx-Plus or Pinned Torx head screws, including all wall plates for devices located outdoors.
- C. Provide wall plates with manufactured hot stamped or engraved black filled lettering at the following areas. The use of permanent ink-type markers, stick-on labels or the adhesive type lettering will be unacceptable.
 - 1. Wall plates for all exhaust fan switches shall read 'EXH FAN.'
 - 2. Wall plates for light switches that are remotely located other than in the same room that control the lighting for the Inmate areas shall read 'INMATE LTG.'
 - 3. Other wall plates with lettering or identification as indicated on drawings.
- D. Weather resistant coverplates:
 - 1. Provide lever type control cover for switches.
 - 2. Receptacles installed outdoors where exposed to weather or in other wet locations, provide cover enclosure so that the integrity of the weatherproofing is not affected when the receptacle is in use. Provide durable corrosion resistant polycarbonate covers with bottom cord openings
 - 3. The coverplates screws shall be secured with torx head screws

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordination with Other Trades:
 - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against the outside of the boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other foreign material
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
 - 5. Rough openings that are made too large for wall outlets in gyp-board or masonry walls, provide finish grout or plaster fill around outlets prior to finishing of walls. Schedule installation of finish plates after the surface upon which they are installed has received final finish.
- B. Conductors:
 - 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire. Stripping shall be done in such a manner that conductors are not exposed at terminals.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted provided the outlet box is large enough.
- C. Device Installation:
 - 1. Replace all devices that have been in temporary use during construction or devices that show signs that they were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. Use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 - 6. When conductors larger than No. 12 AWG are installed, splice No. 12 AWG pigtails for device connections.
 - 7. Tighten unused terminal screws on the device.
 - 8. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
 - 9. Ground fault circuit interrupter receptacles shall provide protection as a stand-alone unit. No other downstream receptacles shall be protected by an individual GFCI device.
 - 10. All outdoor devices with weatherproof covers shall be installed so that the cover lids close in the downward direction.
 - 11. Inside the device outlet box or on the backside of the wallplate, mark legibly with permanent black marker indicating the panel and the branch circuit number(s)
- D. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down and on horizontally mounted receptacles to the right.
- E. Arrangement of Devices: Group adjacent switches under single, multigang wall plates. Provide proper barrier between devices of different voltages and between normal and generator systems
- F. Coordinate final locations of floor service outlets to suit arrangement of partitions and furnishings.

3.2 TABLES

A. To ensure a uniform installation, all devices that are to be provided under this contract shall be of one manufacturer. Provide <u>all</u> receptacles and switches as manufactured by <u>one</u> of the following: 'Leviton', 'Hubbell' or 'Pass & Seymour'.

TABLE-1 RECEPTACLES

	RATING	LEVITON	HUBBELL	<u>P&S</u>
	Duplex 5-20R/20A	5362-I	HBL-5352-I	5352-I
	Single 5-20R/20A	5351-I	HBL-5351-I	5361-I
(1)	Duplex 5-20R/20A	5362-GY	HBL-5352-GRY	5352-GRY
(1)	Single 5-20R/20A	5351-GY	HBL-5351-GRY	5361-GRY
(2a)	GFCI Duplex 5-20R/20A	6899-I (R)	GF5352IA (R)	2091-I (R)
(2b)	GFCI Duplex 5-20R/20A	6490-I		
(3)	Duplex 5-20R/20A	5362-R	HBL-5352RDB	5352-R
(4)	Duplex 5-20R/20A	5362-G	HBL-5352GRY	5352-GRY
(5)	Duplex 5-15R/15A	5262-SG-I	HBL-SG62HI	SG62-HI
(6)	Duplex/20A	5380-I	5360-IS	6362-ISP
(7)	Duplex 5-20R/20A	5362-IG	IG-5362	IG-6300
(8)	Single 5-15R/15A	5261-CH-BR	5233	S3733
(9)	Single 14-30R/30A, 125/250V	278	9430A	3864
(10)	Single 14-50R/50A, 125/250V	279	9450A	3894

NOTES for Table-1 Receptacles

Provide the following types of receptacle <u>only</u> where shown or noted on the drawings.

- (1) Computer receptacle noted as 'C' on plans: gray receptacle with gray wallplate. (May or may not be generator system.)
- (2a) GFCI : Ground fault circuit interrupter.
- (2b) GFCI : Blank face ground fault circuit interrupter device
- (3) Generator system connections: Red receptacle with red wallplate
- (4) UPS connections (uninterruptible power system) Blue receptacle with blue wallplate
- (5) TR Tamper-resistant receptacles.
- (6) TVSS Transient voltage surge suppressor receptacle.
- (7) IG Orange face isolated grounding receptacles.
 - Provide blue wallplate when connected to UPS via generator system.
- (8) Single receptacle on recessed brass wallplate with strong hook for hanging heavy clocks.
- (9) Dryer receptacle (3-pole, 4-wire grounding).
- (10) Range receptacle (3-pole, 4-wire grounding).

TABLE-2 SWITCHES

	<u>TYPE</u>	<u>RATING</u>	LEVITON	HUBBELL	<u>P&S</u>
	SPST Toggle	20A, 120/277	1221-I	HBL-1221-I	20AC1-I
	3-Way Toggle	20A, 120/277	1223-I	HBL-1223-I	20AC3-I
	4-Way Toggle	20A, 120/277	1224-I	HBL-1224-I	20AC4-I
(1)	SPST Toggle	20A, 120/277	1221-R	HBL-1221-R	20AC1-Red
(1)	3-Way Toggle	20A, 120/277	1223-R	HBL-1223-R	20AC3-Red
(1)	4-Way Toggle	20A, 120/277	1224-R	HBL-1224-R	20AC4-Red
(2)	SPST Keyed	20A, 120/277			20AC1-KL
(2)	3-Way Keyed	20A, 120/277			20AC3-KL
(2)	4-Way Keyed	20A, 120/277			20AC4-KL
(3)	SPST Lighted Toggle	20A, 120	1221-LHI	HBL-1221IL	20AC1-CSL
(3)	SPST Lighted Toggle	20A, 277	1221-7LC	HBL-1221IL	20AC1-CSL
(4)	SPST Pilot Light	20A, 120	1221-PLR	HBL-1221PL	20AC1-CPL
(4)	SPST Pilot Light	20A, 277	1221-7PR	HBL-1221PL7	
	SPDT Center Off, Maintained	20A, 120/277	1285-I	HBL-1385I	1221-I

NOTES for Tabel-2 Switches

- Red toggle handle for switches that control lighting circuits connected to the generator system. Wallplate may remain ivory in color
- (2) Cam type locking switches, key operated. Provide twelve (12) keys total to the Owner.
- (3) Lighted toggle handle when load is 'off'
- (4) Red lighted toggle handle when load is 'on'

SECTION 26 2813 - FUSES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:1. Spare-fuse cabinets.

1.3 SUBMITTALS

- A. If the fuses that are to be installed for this project is one of the three(3) manufacturers listed, it will be acceptable to submit only the Manufacturers name and indicating that the fuse types will comply as specified
- B. Spare fuse list : Prepare and submit a typewritten inventory list of each spare fuse size and type per 1.6 of this section
- C. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - a. Let-through current curves for fuses with current-limiting characteristics.
 - b. Time-current curves, coordination charts and tables, and related data.
 - c. Ambient temperature adjustment information.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA FU 1.
- D. Comply with NFPA 70.

1.5 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Quantity equal to 10 percent of each fuse type and size, but no fewer than a quantity of three (3) for each type and size

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussman, Inc.
 - 2. Ferraz Shawmut, Inc.
 - 3. Tracor, Inc.; Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

2.3 SPARE-FUSE CABINET

- A. Cabinet: Wall-mounted, 24" wide x 12" deep x minimum 30" high, 0.05-inch- (1.27-mm-) thick steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 - 1. Finish: Gray, baked enamel.
 - 2. Identification: "SPARE FUSES" in 1-1/2-inch- (38-mm-) high letters on exterior of door.
 - 3. Fuse Pullers: For each size of fuse
 - 4. Provide six(6) spare keys to owners representative

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

- B. Install one(1) fuse cabinet in each of the main normal power 480V Electrical room that is served from a separate padmounted unit
- 3.3 IDENTIFICATION
 - A. Install labels indicating fuse replacement information on inside door of each fused switch.

SECTION 26 2816 - ENCLOSED SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following individually mounted, enclosed switches and circuit breakers:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 DEFINITIONS

A. HD: Heavy duty.

1.4 SUBMITTALS

- A. Product Data: For each type of enclosed switch accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current rating.
 - 4. UL listing for series rating of installed devices.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of switches and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. All products provided under this section shall be of the same manufacturer for the products provided under Section 262413 Switchboards. Subject to compliance with these requirements, provide products by one of the manufacturers specified.
 - 1. Eaton Corporation; Cutler-Hammer
 - 2. General Electric
 - 3. Siemens
 - 4. Square D
- B. Fusible Switch, NEMA KS 1, Type HD, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- C. Nonfusible Switch, NEMA KS 1, Type HD, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- D. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded, and bonded; and labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Auxiliary set of contacts arranged to open before switch blades open.

2.2 ENCLOSURES

A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
1. Outdoor Locations: NEMA 250, Type 3R.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive the enclosed switches for compliance with installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of the enclosed switches
- B. Mount individual wall-mounting switches with tops at uniform height, unless otherwise indicated. Anchor floor-mounting switches to concrete base.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Identification for Electrical Systems."
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate as specified in Division 26 Section "Identification for Electrical Systems."

3.4 CLEANING

- A. On completion of installation, vacuum dirt and debris from interiors; do not use compressed air to assist in cleaning.
- B. Inspect exposed surfaces and repair damaged finishes.

SECTION 26 2913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each enclosed controller.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.
 - d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
 - 3. devices.
- C. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- D. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed controllers of a single type through the same manufacturer as for the switchboards, panels, switches, etc.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, minimum clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. All products provided under this section shall be of the same manufacturer for the products provided under Division 26 Section "Switchboards." Subject to compliance with these requirements, provide products by one of the following:
 - 1. Eaton Corporation; Cutler-Hammer.
 - 2. General Electric.
 - 3. Siemens.
 - 4. Square D.
- B. Magnetic Enclosed Controllers:
 - 1. Combination starter units shall be full-voltage non-reversing, unless shown otherwise utilizing fusible switches.
 - a. Fusible switches shall be quick-make, quick-break and shall accept class R dimension fuses and the combination shall safely interrupt 100,000 amperes. Fusible combination starters shall provide Type 2 coordination to 100,000 amperes. Provide visible blade disconnects to verify all phases of the switch assembly have opened
 - 2. Motor Starters:
 - a. Provide electromechanical type motor starters with coil control and overload integrated into a single or dual microcontroller.
 - b. The motor starter shall operate over a temperature range of -40 to 149 deg F (-40 to 65 deg C) and shall meet or exceed the following Standards and Certifications: UL, CSA, NEMA ICS1, ICS2, ICS5.
 - c. Provide one toroidal current sensor per phase accurate to 2 percent providing input to analog circuitry and software which yields a time-current curve paralleling actual motor heating. Motor FLA shall be set via a potentiometer for 1.0 or greater Service Factor settings.
 - d. Provide user-selectable overload Trip Class of 10, 20 and 30 on each Overload Relay. To adjust factory defaults, Trip Class shall be manually changed using the Test button and FLA dial.
 - e. Provide phase loss and phase current unbalance protection. If the phase unbalance of any phase is greater than or less than approximately 50 percent of the average, the device trips. This feature is user enabled / disabled and manually changed using the Test button and FLA dial.
 - f. Provide each motor starter with a lockable cover that prevents unwanted tampering of FLA dial settings once installed.
 - g. Control Voltages:
 - 1) The starter voltage shall be nominal 24V DC from 20 to 28V DC.

- 2) 24V DC control shall be provided by a control power stab that connects to the DC Bus. The control power stab shall contain fuseless overcurrent protection.
- 3) Control power for field circuits shall be supplied by 24V DC from the starter unit.
- h. Motor starters shall have replaceable fixed and movable contacts, Size 1 through 5.
- i. Motor starters shall have no laminations, shading coils, or magnet noise.
- j. Accessories:
 - Motor starters shall accommodate auxiliary contacts per various maximum combinations of single and dual auxiliaries. Maximum number of circuits shall be six (6) for size 1 through 4 and twelve (12) for size 5 through 7 starters. Contacts shall be rated ten (10) amperes continuous, 7200 VA make, 720 VA break for 120V AC, 3600 VA make, 360 VA break for 240V AC, 1800 VA make, 180 VA break for 480V AC, 1440 VA make, 144 VA break for 600V AC, and 137.5 VA make and break for 125 through 250V DC. No seal-in auxiliary contacts are required.
 - 2) Provide mechanical interlock on reversing contactors of a pivot-type mechanism to prevent closing of one contactor when the other is closed. Coil controller energizes both forward and reverse contactors providing one control point for wiring.
- k. All printed circuit boards shall be conformally coated to provide environmental robustness.
- 1. Motor starters shall provide Manual or Auto Reset capability.
- 3. Each starter shall be equipped with a primary and secondary fused control power transformer (100 VA minimum), Red 'running' pilot light, Green 'stop' pilot light, and two(2) NO / two(2) NC auxiliary contacts.
- C. Combination Magnetic Controller: Factory-assembled combination controller and disconnect switch.
 - 1. Fusible Disconnecting Means: NEMA KS 1, heavy-duty, fusible switch with rejectiontype fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 947-4-1, as certified by an NRTL.

2.2 MULTISPEED ENCLOSED CONTROLLERS

- A. Multispeed Enclosed Controller: Match controller to motor type, application, and number of speeds; include the following accessories:
 - 1. Compelling relay to ensure that motor will start only at low speed.
 - 2. Accelerating relay to ensure properly timed acceleration through speeds lower than that selected.
 - 3. Decelerating relay to ensure automatically timed deceleration through each speed.

2.3 ENCLOSURES

- A. Description: surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.

2.4 ACCESSORIES

A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.

- B. Push-Button Stations and Pilot Lights : NEMA ICS 2, heavy-duty type.
- C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factoryapplied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- D. Control Relays: Auxiliary and adjustable time-delay relays.

2.5 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and tested enclosed controllers before shipping.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
- B. Select horsepower rating of controllers to suit motor controlled.

3.2 INSTALLATION

- A. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."
- B. Install freestanding equipment on concrete bases.
- C. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."

3.3 IDENTIFICATION

A. Identify enclosed controller, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.

C. Connect other automatic control devices where applicable.

3.5 CONNECTIONS

- A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

SECTION 26 4313 - TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE POWER CIRCUITS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TVSSs for low-voltage power, control, and communication equipment.
- B. Related Sections include the following:
 - 1. Division 26 Section "Switchboards" for factory-installed TVSS.
 - 2. Division 26 Section "Panelboards" for factory-installed TVSS.

1.3 DEFINITIONS

A. TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating weights, operating characteristics, furnished specialties, and accessories.
- B. Product Certificates: For transient voltage suppression devices, signed by product manufacturer certifying compliance with the following standards:
 - 1. UL 1283.
 - 2. UL 1449.
- C. Qualification Data: For testing agency.
- D. Operation and Maintenance Data: For transient voltage suppression devices to include in emergency, operation, and maintenance manuals.
- E. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain suppression devices and accessories through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with IEEE C62.41, "IEEE Guide for Surge Voltages in Low Voltage AC Power Circuits," and test devices according to IEEE C62.45, "IEEE Guide on Surge Testing for Equipment Connected to Low-Voltage AC Power Circuits."

- D. Comply with NEMA LS 1, "Low Voltage Surge Protection Devices."
- E. Comply with UL 1283, "Electromagnetic Interference Filters," and UL 1449, "Transient Voltage Surge Suppressors."

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Protection Technologies, Inc.
 - 2. Current Technology, Inc.
 - 3. Eaton Corporation; Cutler-Hammer
 - 4. General Electric
 - 5. LEA International.
 - 6. Siemens
 - 7. Square D.

2.2 SERVICE ENTRANCE SUPPRESSORS

- A. Surge Protection Device Description: Non-modular, sine-wave-tracking type with the following features and accessories:
 - 1. LED indicator lights for power and protection status.
 - 2. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 3. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.
- B. Surge Protection Device Description: Modular design with field-replaceable modules, sinewave-tracking type with the following features and accessories:
 - 1. Fuses, rated at 200-kA interrupting capacity.
 - 2. Fabrication using bolted compression lugs for internal wiring.
 - 3. Integral disconnect switch.
 - 4. Redundant suppression circuits.
 - 5. Redundant replaceable modules.
 - 6. Arrangement with copper bus bars and for bolted connections to phase buses, neutral bus, and ground bus.
 - 7. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 - 8. LED indicator lights for power and protection status.
 - 9. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 10. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status. Coordinate with building power monitoring and control system.
 - 11. Surge-event operations counter.

Peak Single-Impulse Surge Current Rating: 240kA per phase.

Protection modes and UL 1449 SVR for grounded wye circuits with voltages of 480Y/277 4-wire circuits shall be as follows:

- 12. Line to Neutral: 800V
- 13. Line to Ground: 800V
- 14. Neutral to Ground: 800V

2.3 SUPPRESSORS FOR ELECTRONIC-GRADE PANELBOARDS

- A. Surge Protection Device Description: Sine-wave-tracking type, panel-mounted design with the following features and accessories:
 - 1. LED indicator lights for power and protection status.
 - 2. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 3. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.
 - 4. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
- B. Peak Single-Impulse Surge Current Rating: 120kA per phase.
- C. Protection modes and UL 1449 SVR for grounded wye circuits with voltages of 208Y/120, 3-phase, 4-wire circuits shall be as follows:
 - 1. Line to Neutral: 400V
 - 2. Line to Ground: 400V
 - 3. Neutral to Ground: 400V
- D. Protection modes and UL 1449 SVR for 240/120-V, single-phase, 3-wire circuits shall be as follows:
 - 1. Line to Neutral: 400 V.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.

PART 3 - EXECUTION

3.1 INSTALLATION OF SURGE PROTECTION DEVICES

- A. Install devices at service entrance on load side, with ground lead bonded to service entrance ground.
- B. Install devices for panelboard with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - 1. Provide multipole, circuit breaker as a dedicated disconnect for suppressor

3.2 PLACING SYSTEM INTO SERVICE

A. Do not energize or connect service entrance equipment and panelboards to their sources until surge protection devices are installed and connected.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust equipment installation. Report results in writing.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transient voltage suppression devices. Refer to Division 01 Section "Demonstration and Training."

SECTION 26 5100 - INTERIOR LIGHTING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CRI: Color-rendering index.
- C. CU: Coefficient of utilization.
- D. HID: High-intensity discharge.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.
- F. RCR: Room cavity ratio.

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of the lighting fixture schedule designations. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Emergency lighting units including battery type and charger.
 - 3. Lamps and ballasts including energy-efficiency data.
- B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.
- C. Samples for Verification: At the discretion of the Architect/Engineer, interior lighting fixture samples may be requested at any time during the submittal process or prior to delivery Each sample shall include the following:
 - 1. Lamps and Ballasts: Specified units installed.
 - 2. Accessories: Cords and plugs.
- D. Qualification Data: For agencies providing photometric data for lighting fixtures

1.5 DELIVERY, STORAGE AND HANDLING

- A. Deliver each lighting fixture separately wrapped and contained in factory box containers which properly protects the fixtures from physical damage
- B. Unless ready for installation, store the lighting fixtures in a clean dry space, protected from weather, dirt, fumes, water, construction debris and damage
- C. Each factory box that the lighting fixture is contained in shall be properly marked and identified as to the fixture type that correlates to the Lighting Fixture Schedule

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.
- C. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs.

1.7 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.8 WARRANTY

A. Refer to Division 01 for warranty requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Refer to the Lighting Fixture Schedule
- B. Ballast Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Osram-Sylvania
 - 2. Advance
 - 3. General Electric
- C. Emergency Fluorescent Power Unit Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Bodine
 - 2. Lithonia Power Sentry
 - 3. Iota

- D. Lamp Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Osram-Sylvania
 - 2. General Électric
 - 3. Phillips

2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Incandescent Fixtures: Comply with UL 1598.
- C. Fluorescent Fixtures: Comply with UL 1598.
- D. Metal Parts: Free of burrs and sharp corners and edges.
- E. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

- A. Electronic Ballasts: Comply with ANSI C82.11; Programmed rapid start type, unless otherwise indicated and designed for type and quantity of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. Basis of design is Osram-Sylvania Quicktronic PROStart (OTP PSX-SC). Prior approval required for additional manufacturers.
 - 1. Sound Rating: A
 - 2. Total Harmonic Distortion Rating: Less than 10 percent.
 - 3. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 4. Operating Frequency: 20 kHz or higher.
 - 5. Lamp Current Crest Factor: 1.7 or less.
 - 6. BF: 0.71 or higher.
 - 7. Power Factor: 0.98 or higher.
 - 8. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.
- B. Electronic Programmed-Start Ballasts for T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 - 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.95 or higher.

- C. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by the ballast manufacturer for use with specific dimming control system with the recommended lamp type

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

- A. Description: Electronic programmed rapid-start type, complying with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.95 or higher.
 - 10. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 - 11. Ballast Case Temperature: 75 deg C, maximum.
- B. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

2.5 EMERGENCY FLUORESCENT POWER UNIT

- A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
 - 1. Emergency Connection: Operate one fluorescent lamp continuously at a minimum output of 1400 lumens for linear fluorescent lamps and 1000 lumens for compact fluorescent lamps unless noted otherwise on drawings. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Night-Light Connection: Operate one fluorescent lamp continuously.
 - 3. Test Push Button and Indicator Light: Visible and accessible without entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 4. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

2.6 EXIT SIGNS

- A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.
 - 2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 - a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

2.7 FLUORESCENT LAMPS

- A. Low-Mercury Lamps: Comply with EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.
- B. T8 rapid-start low-mercury lamps, rated 28W maximum, nominal length of 48 inches (1220mm), 2800 initial lumens (minimum), CRI 85 (minimum), color temperature 3500K, and average rated life 36,000 hours, unless otherwise indicated. Basis of design is Osram-Sylvania Octron Supersaver FO28835XPSSECO (This lamp may not be applicable for dimming systems. Coordinate with dimming ballast manufacturer for similar and recommended lamp)
- C. T8 rapid-start low-mercury lamps, rated 17W maximum, nominal length of 24 inches (610 mm), 1300 initial lumens (minimum), CRI 85 (minimum), color temperature 3500K, and average rated life of 20,000 hours, unless otherwise indicated.
- D. T5 rapid-start low-mercury lamps, rated 28W maximum, nominal length of 48 inches (1220 mm), 2900 initial lumens (minimum), CRI 85 (minimum), color temperature 3500K, and average rated life of 30,000 hours, unless otherwise indicated.
- E. T5HO rapid-start, high-output low-mercury lamps, rated 54 W maximum, nominal length of 48 inches (1220mm), 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 3500K, and average rated life of 30,000 hours, unless otherwise indicated.
- F. Compact Fluorescent Lamps: 4-Pin, low mercury, CRI 80 (minimum), color temperature 3500K, average rated life of 10,000 hours at 3 hours operation per start, and suitable for use with dimming ballasts, unless otherwise indicated.
 - 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 - 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 - 3. 26 W: T4, double or triple tube, rated 1700 initial lumens (minimum).
 - 4. 32 W: T4, triple tube, rated 2200 initial lumens (minimum).
 - 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).

2.8 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channeland angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage.
- E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.
- F. Rod Hangers: 3/8-inch minimum diameter, cadmium-plated, threaded steel rod.
- G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture
- B. Support for Recessed Flanged Type Fixtures and Fixtures in or on Grid-Type Suspended Ceilings:
 - 1. Recessed Flanged Types: Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches from lighting fixture corners.
 - 2. Fixtures in Lay-in Grid Ceilings: In addition to the required ceiling supports, install at least two (2) separate and independent #12 gauge wire hangers at each diagonal corner of the fixture housing. Support the wire hangers from the roof structure. The wire hangers may be slack. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
 - 3. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 - 4. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
- C. Suspended Lighting Fixture Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
 - 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- D. Adjust aimable lighting fixtures to provide required light intensities

- E. Coordinate installation of the fixtures so that the fixture may accessible and able to be relamped and maintained. Do not install above piping, ductwork, cable trays or other adjacent building construction component
- F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- 3.2 FIELD QUALITY CONTROL
 - A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
 - B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

SECTION 26 5600 - EXTERIOR LIGHTING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:1. Exterior luminaires with lamps and ballasts.
- B. Related Sections include the following:1. Division 26 Section "Interior Lighting."

1.3 DEFINITIONS

- A. CRI: Color-rendering index.
- B. HID: High-intensity discharge.
- C. Luminaire: Complete lighting fixture, including ballast housing if provided.
- D. Pole: Luminaire support structure, including tower used for large area illumination.

1.4 SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of the Lighting Fixture Schedule. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 - 2. Details of attaching luminaires and accessories.
 - 3. At the discretion of the Architect/Engineer, certain luminaire photometric data may be required to be certified by a qualified independent testing agency. Photometric data for the remaining luminaires shall be certified by manufacturer.
 - 4. Ballasts, including energy-efficiency data.
 - 5. Lamps, including life, output, and energy-efficiency data.
 - 6. Materials, dimensions, and finishes of poles.
 - 7. Anchor bolts for poles.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with IEEE C2, "National Electrical Safety Code."

C. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store poles on decay-resistant-treated skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- B. Retain factory-applied pole wrappings on metal poles until ready for pole installation.

1.7 WARRANTY

- A. Warranty Period for Lamps: Refer to Division 1 Sections to replace lamps that fail prior to the final date of Substantial Completion.
- B. Warranty Period for Poles: Refer to Division 1 Sections to replace poles that fail prior to the final date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Refer to Lighting Fixture Schedule.

2.2 LUMINAIRES, GENERAL REQUIREMENTS

- A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations
- B. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum, unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

- I. Light Shields: When specified provide metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
- J. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- K. Luminaire Finish: Manufacturer's standard finish applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

2.3 FLUORESCENT LAMPS AND BALLASTS

- A. Lamp Manufacturers: Subject to compliance with requirements, provide products from one of the following manufacturers:
 - 1. Osram-Sylvania
 - 2. General Electric
 - 3. Philips
- B. Low-Temperature Ballast Capability: Rated by its manufacturer for reliable starting and operation of indicated lamp(s) at temperatures minus 20 deg F and higher.
- C. Ballast Characteristics:
 - 1. Power Factor: 90 percent, minimum.
 - 2. Sound Rating: A.
 - 3. Total Harmonic Distortion Rating: Less than 10 percent.
 - 4. Electromagnetic Ballasts: Comply with ANSI C82.1, energy-saving, high power factor, Class P, automatic-reset thermal protection.
 - 5. Case Temperature for Compact Lamp Ballasts: 65 deg C, maximum.
 - 6. Transient-Voltage Protection: Comply with IEEE C62.41 Category A or better.
- D. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures minus 20 deg F and higher.
- E. Fluorescent Lamps: Low-mercury type. Comply with the EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.

2.4 EMERGENCY FLUORESCENT POWER UNIT

- A. Emergency Fluorescent Power Unit Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Bodine
 - 2. Lithonia Power Sentry
 - 3. Iota

2.5 BALLASTS FOR HID LAMPS

- A. Ballast Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Osram-Sylvania
 - 2. Advance
 - 3. General Electric
- B. Comply with ANSI C82.4 and UL 1029 and capable of open-circuit operation without reduction of average lamp life. Include the following features, unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer.
 - 2. Minimum Starting Temperature: Minus 22 deg F.
 - 3. Normal Ambient Operating Temperature: 104 deg F.
- C. Auxiliary, Instant-On, Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when momentary power outages occur. A time-delay control system shall automatically turn the quartz lamp off when the HID lamp reaches approximately 60 percent of light output.

2.6 HID LAMPS

- A. Lamp Manufacturers: Subject to compliance with requirements, provide products from one of the following manufacturers:
 - 1. Osram-Sylvania
 - 2. General Electric
 - 3. Philips
 - 4. Venture
- B. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and color temperature 4000K.

PART 3 - EXECUTION

- 3.1 LUMINAIRE INSTALLATION
 - A. Install lamps in each luminaire.
 - B. Fasten luminaire to indicated structural supports.
 - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
 - C. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

- A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole (Refer to Details on the drawings)
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

3.3 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 - 1. Verify operation of photoelectric controls.
- C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments were required to lighting system, retest to demonstrate compliance with standards.

SECTION 26 6500 - ELECTRICAL SPECIAL INSPECTIONS AND TESTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General Conditions and Division 01 Specification Sections, apply to this Section

1.2 SUMMARY

- A. All inspections and tests shall be performed in accordance with applicable codes and standards including: NEC, ANSI, IEEE, NFPA, NEMA, NETA, and OSHA.
- B. The contractor shall engage the services of a recognized independent testing firm for the purpose of performing inspections and tests as herein specified.
- C. The testing firm shall provide all test instruments, material, equipment, labor, and technical supervision to perform such inspections and tests.
- D. It is the purpose of these specifications to assure that all tested electrical equipment, both contractor and owner supplied, is operational and within industry and manufacturers tolerances and is installed in accordance with design specifications and manufacturers recommendations.
- E. The inspections and tests shall determine suitability for energization.
- F. Perform Visual and Mechanical Inspections and Electrical tests stated in the current and latest InterNational Electrical Testing Association-Acceptance Testing Specifications (NETA ATS). The equipment to be inspected and tested are as follows:
 - 1. 600V feeder back-feeding the existing service
 - 2. Service Entrance Switchboard Main Circuit Breaker
 - 3. Service Entrance Switchboard Surge Protective Device
 - 4. Grounding System
 - 5. Engine Generator
 - 6. Transfer Switch

1.3 QUALIFICATIONS OF INDEPENDENT TESTING ORGANIZATION

- A. The independent testing organization shall have been engaged in full practice in inspections, testing, calibration, and adjusting of electrical distribution systems, for a minimum of three years.
- B. The independent testing organization shall be financially independent of the supplier, producer, or installer of the equipment.
- C. The independent testing organization shall have a calibration program with accuracy traceable every year in an unbroken chain, to the National Institute of Standards and Technology (NIST).
- D. The independent testing organization shall have a designated safety representative on the project. The safety standards followed shall include OSHA and NFPA 70E.

E. Inspection, testing, and calibration shall be supervised by an engineering technician, certified by a national organization, with a minimum of five years experience inspecting, testing, and calibrating electrical equipment, systems and devices. Information on the certified engineering technician shall be submitted to the engineer for approval prior to the start of work.

1.4 COORDINATION OF RESPONSIBILITY

- A. The contractor/owner shall supply a suitable and stable power source of electrical power to each test site. The independent testing organization shall specify the specific power requirements.
- B. The contractor shall supply to the independent testing organization complete sets of approved drawings, coordination study and other information necessary for an accurate inspection and evaluation of the system prior to performance of any tests.
- C. The independent testing organization shall notify the Owner and Contractor prior to commencement of any testing.
- D. The independent testing organization shall maintain a written record of all tests and shall assemble and certify a final test report.
- E. The independent testing organization shall have a designated safety representative on the project to supervise operations with respect to safety.

1.5 SUBMITTALS

- A. The qualifications of the independent testing organization shall be submitted to the Architect/ Engineer for approval prior to the start of testing.
- B. After the evaluation of the system and equipment has been made, the independent testing organization shall submit for approval an acceptance test procedure for each item of electrical distribution equipment to be tested on this project. No testing shall be performed until the test procedures have been approved.
- C. Three bound copies of the certified test reports shall be submitted to the Architect / Engineer at the completion of all testing. The final report shall be neatly typed and organized, which shall be signed and certified by a registered professional Electrical Engineer. The reports shall include the following information:
 - 1. Summary of the project
 - 2. Description of equipment tested
 - 3. Visual inspection report
 - 4. Description of tests
 - 5. Test results
 - 6. Conclusions and recommendations
 - 7. Appendix including appropriate test forms
 - 8. Identification of test instruments and equipment used

PART 2 - PRODUCTS (Not Applicable)
PART 3 - EXECUTION

3.1 CABLES

- A. After installing the feeder that back-feeds the existing service switchboard and before electrical circuitry has been energized, demonstrate product capability and compliance to the specifications.
 - 1. Perform Visual and Mechanical Inspections and Electrical tests stated in NETA ATS, Section 7.3
- B. Report values that do not meet the required values.

3.2 MAIN CIRCUIT BREAKER

- A. After installing the new Service Entrance Switchboard and before electrical circuitry has been energized, demonstrate product capability and compliance to the specifications manufacturer's written recommendations.
 - 1. Main Circuit Breaker : Perform Visual and Mechanical Inspections and Electrical tests stated in NETA ATS, Section 7.6
- B. Report values that do not meet manufacturers written recommendations.
- C. Remove and replace malfunctioning units with new and retest.

3.3 GROUNDING

- A. After installing grounding system demonstrate product capability and compliance to the specifications. Perform inspections and tests specified below. Report values that do not meet designed values.
 - 1. Perform Visual and Mechanical inspections and Electrical tests stated in NETA ATS, Section 7.13
- B. The required test shall conduct ground integrity tests for each building grounding electrode systems.
- C. At each building perform fall of potential test in accordance with IEEE Standard 81 on the main grounding electrode system. Perform point to point tests to determine the resistance between the main grounding system and all major electrical equipment, system neutral, and derived neutral points. The tests shall be conducted not less than 2 full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
- D. Provide drawings locating each test location, identify each by letter in alphabetical order and key to the record of tests and observations. Include the ground electrode type driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
 - 1. Equipment Rated 500 kVA and Less: 5 ohms.
 - 2. Equipment Rated 500 to 1000 kVA: 5 ohms.
 - 3. Equipment Rated More Than 1000 kVA: 3 ohms.
 - 4. Pad-Mounted Units : 5 ohms.
 - 5. Manhole Grounds: 5 ohms.

E. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect / Engineer promptly and include recommendations to reduce ground resistance.

3.4 SURGE PROTECTIVE DEVICES – LOW VOLTAGE

- A. Before electrical circuitry has been energized, demonstrate product capability and compliance to the specifications.
 - 1. Perform Visual and Mechanical Inspections and Electrical tests stated in NETA ATS, Section 7.19 – Low Voltage
- B. Complete start-up checks according to manufacturers written instructions and recommendations

3.5 ENGINE GENERATOR

- A. Before electrical circuitry has been energized, demonstrate product capability and compliance to the specifications.
 - 1. Perform Visual and Mechanical Inspections and Electrical tests stated in NETA ATS, Section 7.22 – Low Voltage

3.6 TRANSFER SWITCHES

- A. Before electrical circuitry has been energized, demonstrate product capability and compliance to the specifications.
 - 1. Perform Visual and Mechanical Inspections and Electrical tests stated in NETA ATS, Section 7.22

3.7 SPECIAL ELECTRICAL INSPECTIONS PROGRAM

- A. Perform required inspections and testing that may be required by the local Authority Having Jurisdiction. These inspections and testing may be in addition to the tests identified by this section.
 - 1. The same testing agency shall submit written documentation to the Engineer of Record detailing each inspection conducted along with test reports for all testing performed.
 - 2. All discrepancies shall be corrected by the Installing Contractor prior to the submission of the documentation to the Engineer of Record.

END OF SECTION

DIVISION 27 - COMMUNICATIONS

Pages

Section 27 0500	Common Work Results for Communications	11
Section 27 1100	Communications Equipment Room Fittings	6
Section 27 1300	Communications Backbone Cabling	13
Section 27 1500	Communications Horizontal Cabling	13
	e e	

SECTION 27 0500 - COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Communications equipment coordination and installation.
 - 2. Sleeves for pathways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common communications installation requirements.
- B. The work listed below is specifically excluded from the Division 27 scope of work:
 - 1. Incoming common carrier services.
 - 2. Private Branch Exchange Systems.
 - 3. Wide Area Network Systems.
 - 4. Materials provided by the owner as identified in the Contract Documents.
- C. The Contractor shall be responsible for:
 - 1. Providing all additional materials, and the necessary labor and services required to ensure all components of the system are completely installed in accordance with the intent of the Contract Documents.
 - 2. Furnishing and installing all incidental items not actually shown or specified, but which are required by good practice to provide complete functional systems.
 - 3. Coordinating the details of facility equipment and construction for all specification divisions that affect the work covered under this Division.
 - 4. Coordinating all activities with the overall construction schedule.
 - 5. Developing bill of materials, perform material management and efficient use of the materials whether they are issued by the Contractor, the owner or purchased by the Contractor.
 - 6. Ensure materials in excess of those required to complete the project are kept in their original condition and packaging for restocking.
- D. Drawing intent:
 - 1. The communications plan drawings shown only general locations of equipment, devices, raceways, cable trays, boxes, etc. All dimensioned locations and elevations are

approximate. The contractor is responsible for the field coordination of communications work with the other trades prior to beginning work.

2. The contractor shall be responsible for the proper placement and routing of equipment, cable, raceways, cable tray, and related components, according to the Contract Documents and subject to review by the contractor.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.
- C. Provide: The term "provide" means "to furnish and install, ready for the intended use and in complete operating condition."
- D. Install: The term "install" is used to describe operations at project site including the actual "unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations."
- E. Directed: Terms such as "directed," "requested," "authorized," "selected," "approved," "required," and "permitted" mean "directed by the Architect," "requested by the Architect," and similar phrases.
- F. Approve: The term "approved," where used in conjunction with the Architect's action on the Contractor's submittals, applications and requests, is limited to the Architect's duties and responsibilities as stated in the Conditions of the Contracts.
- G. Indicated: The term "indicated" refers to graphic representations, notes or schedules on the Drawings, or other Paragraphs or Schedules in the Specifications, and similar requirements in the Contract Documents. Where terms such as "shown," "noted," "scheduled," and "specified" are used, it is to help the reader locate the reference; no limitation on location is intended.
- H. Active Equipment: Electronic equipment used to develop various WAN and LAN services.
- I. Backbone: Collective term sometimes used to describe the campus and vertical distribution subsystem facilities and media interconnecting service entrances, communications rooms, and communications cabinets.
- J. Bonding: Permanent joining of metallic parts to form an electrically conductive path which will assure electrical continuity and the capacity to conduct safely any current likely to be imposed on it.
- K. Building Equipment Room (BER): Room in each building used to distribute communications services to Telecommunications Rooms (TR) in the same building. Typically, the BER contains passive equipment used for electrical protection (protectors) and building cross-connect, and active network equipment used for LANs. The BER may also serve the function of a TR.

- L. Cabinet: Freestanding, floor-mounted modular enclosure designed to house and protects rackmounted electronic equipment.
- M. Cable Tray: Vertical or horizontal open supports usually made of aluminum or steel that is fastened to a building ceiling or wall. Cables are laid in and fastened to the trays. A cable tray is not a raceway.
- N. Campus: Grounds and buildings of a multi-building premises environment.
- O. Channel: The end-to-end transmission path between two points at which application specific equipment is connected; may include one or more links, cross-connect jumper and/or patch cords, and work area station cords. Does not include connection to active equipment.
- P. Communications Equipment Room –See Telecommunications Room (TR)
- Q. Cross-Connect: Equipment used to terminate and tie together communications circuits.
- R. Cross-Connect Jumper: A cluster of twisted-pair conductors without connectors used to establish a circuit by linking two cross-connect termination points.
- S. Fiber Optic Distribution Unit (FDU): Cabinet with terminating equipment used to develop fiber optic cross-connect facilities.
- T. Grounding: A conducting connection to earth, or to some conducting body that serves in place of earth.
- U. Hinged Cover Enclosure: Wall-mounted box with a hinged cover that is used to house and protect electrical devices.
- V. Horizontal: Pathway facilities and media connecting Telecommunications Rooms (TR) to Telecommunications Outlets (TO).
- W. Jack: Receptacle used in conjunction with a plug to make electrical contact between communications circuits, e.g., eight-position/eight-contact modular jacks.
- X. Link: A transmission path between two points, not including terminal equipment, work area cables, and equipment cables; one continuous section of conductors or fiber, including the connecting hardware at each end.
- Y. Local Area Network (LAN): Data transmission facility connecting a number of communicating devices, e.g., serial data, Ethernet, token ring, etc. Typically, the network is limited to a single site.
- Z. Main Equipment Room (MER): The room used to distribute communication services to all Building Equipment Rooms (BER's) on the premises, and to interconnect premises services with the telephone companies. Typically, the MER contains passive equipment used for electrical protection (protectors) and main campus cross-connect, and active equipment used for PBX, WAN, and LAN.

- AA. Media: Twisted-pair, coaxial, and fiber optic cable or cables used to provide signal transmission paths.
- BB. Mounting Frame: Rectangular steel framework which can be equipment rack or wall mounted to support wiring blocks, patch panels, and other communications equipment.
- CC. Passive Equipment: Non-electronic hardware and apparatus, e.g., equipment racks, cable trays, electrical protection, wiring blocks, fiber optic termination hardware, etc.
- DD. Patch Cords: A length of wire or fiber cable with connectors on one or both ends used to join communications circuits at a cross-connect.
- EE. Patch Panel: System of terminal blocks or connectors used with patch cords that facilitate administration of cross-connect fields.
- FF. Pathway: Facility for the placement of communications cable. A pathway facility can be composed of several components including conduit, wireway, cable tray, surface raceway, underfloor systems, raised floor, ceiling support wires, etc.
- GG. Private Branch Exchange (PBX): Private communications switching system located on the user's premises. A PBX switches voice and data calls within a building or premises and between the premises and facilities provided by public common carrier networks.
- HH. Protectors: Electrical protection devices used to limit foreign voltages on metallic communications circuits.
- II. Raceway: An enclosed channel designed expressly for holding wires or cables; may be of metal or insulating material. The term includes conduit, tubing, wireway, underfloor raceway, and surface raceway; does not include cable tray.
- JJ. Racks: An open, freestanding, floor-mounted structure, typically made of aluminum or steel, used to mount equipment; usually referred to as an equipment rack.
- KK. Telecommunication Outlet (TO): Connecting device mounted in a work area used to terminate horizontal cable and interconnect cabling with station equipment.
- LL. Telecommunications Room (TR): Distributes communications services to users within a serving zone and interconnects with the BER. Typically, the TER contains passive equipment used for cross-connect and active network equipment used for LANs. TR is sometimes referred to as the communications equipment room.
- MM. Wide Area Network (WAN): Active communications transmission facilities extending beyond the premises.
- NN. Wiring Block: Punch down terminating equipment used to develop twisted-pair cross-connect facilities.

1.4 SUBMITTALS

- A. General: Follow the procedures specified in Division 01 Section "Submittals.".
- B. Prior Approvals:
 - 1. Submit for prior approval on Substitution Request Forms. Only written requests on these forms with complete submittal data will be considered.
 - 2. Refer to each section for specific submittal requirements.
 - 3. Prior approval does not automatically mean equipment is approved. Final approval of all equipment and materials shall be determined during shop drawing review. Any changes required due to substitution are the Contractor's responsibility.

1.5 QUALITY ASSURANCE

- A. All workmen on this project shall be thoroughly knowledgeable of all applicable codes and standards related to all systems specified by Division 27 for this project. All installations shall be performed by skilled tradesman fully aware of the latest techniques, practices, and standards of the industry. Haphazard or poor installation practice will be cause for rejection of work.
- B. Good workmanship and appearance shall be considered important. Carefully lay out all work in advance to install in a neat and good workmanship-like manner all in accordance with recognized practices and standards of the industry.
- C. All work shall be performed in accordance with the following Codes and Industry Standards, unless noted otherwise:
 - 1. NFPA 70 National Electrical Code, current version adopted by local or State AHJ.
 - 2. TIA/EIA 568-B Commercial Building Telecommunications Cabling Standard, current version.
 - 3. TIA/EIA 569-B Commercial Building Standard for Telecommunications Pathways and Spaces, current version.
 - 4. TIA/EIA 606-A Administration Standard for Commercial Telecommunications Infrastructure, current version.
 - 5. J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.
 - 6. IEEE 241 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings, pertaining to communication systems.

1.6 SYSTEM DESCRIPTION

- A. The owner will implement a comprehensive integrated communications distribution system, as described in paragraph B below, to provide wiring infrastructure which may be used to support one or more of the following services and systems:
 - 1. Data telecommunications.

- B. The communications distribution system consists of the following major subsystems, as specified elsewhere:
 - 1. Interbuilding Backbone: The interbuilding subsystem refers to all twisted-pair and fiber optic backbone communications cabling connecting the Main Building Equipment Room (BER) to each building equipment room (BER) in all buildings on the campus. Note: typically outside plant cables.
 - 2. Communication Rooms: The communications room contains the distribution subsystem comprised of the passive components used to terminate cabling subsystems and distribute communications services. This subsystem includes installations in the Building Equipment Rooms (BERs), in Telecommunications Rooms (TRs) and Telecommunications Enclosures (TEs). Constructed as specified in Section 27 1100.
 - 3. Horizontal Distribution: The horizontal distribution subsystem refers to all intra-building twisted-pair and fiber optic communications cabling connecting telecommunication rooms (TR's) to telecommunication outlets (TOs) located at individual work areas. Constructed as specified in Section 27 1500.
 - 4. Work Area Distribution Subsystem: Patch cords, adapters, and devices located between the TO and station equipment. Constructed as specified in Section 27 1600.
- C. The communications distribution system is based on a combination of the following communications transmission technologies:
 - 1. 100-ohm 4-pair unshielded twisted-pair cable. Coordinate with owner for correct Category of cabling prior to bid (Cat 5e, Cat 6, Cat 6a)
 - 2. 100-ohm multi-pair unshielded twisted-pair cable. (Cat 3).
 - 3. 50/125 and 62.5/125 micron multimode fiber optic cable.
 - 4. 8-position telecommunications jacks.
 - 5. 8-position telecommunications patch panels
 - 6. Insulation displacement connector (IDC) type field terminated wiring blocks
 - 7. Factory Terminated copper patch cords
 - 8. Rack mount fiber optic hardware
 - 9. Fiber optic connectors.
 - 10. Factory terminated fiber optic patch cords
- D. The work locations and limits of work are shown on the drawings.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of communications equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting pathways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices with other trades and building elements.

- C. Coordinate with the Division 26 contractor for required sleeve locations for all telecommunications wiring. Sleeves shall be used when penetrating all walls, ceilings, and floors. Sleeves shall be provided by the Division 26 contractor, but sized and located by the Division 27 contractor.
- D. Sequence, coordinate, and integrate the installation of materials and equipment for efficient flow of the Work. Coordinate the installation of large equipment requiring positioning before closing in the building.
- E. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- F. Coordinate location of access panels and doors for communications items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
- G. Special boxes furnished by Division 27 and installed by Division 26 shall be coordinated. The Division 27 contractor shall initiate the coordination in a timely manner.
- H. Scaled and figured locations are approximate only. Before proceeding with work, carefully check and verify with building dimensions on architectural drawings, and be responsible for properly fitting equipment and materials together and to the structure in spaces provided.
- I. Drawings are essentially diagrammatic and indicate the general arrangement of equipment. Carefully study drawings and premises in order to determine best methods, exact locations, routes, building obstructions, etc., to install apparatus and equipment. Install apparatus and equipment in manner and locations to avoid obstructions, preserve headroom, and keep openings and passageways clear.
- J. Record 'As-Built' Documents:
 - 1. Prepare and record 'as-built' documents in accordance with the requirements in Division 01 Section "Project Closeout."
 - 2. Maintain a separate set of Division 27 drawings at the job site which is not used for construction purposes. This set shall be kept updated by neatly marking all changes and deviations made during construction. Use a color that contrasts with the drawings. This same set of drawings shall be made available at all times during construction for review at any time by the Architect/Engineer.
 - 3. In addition to the requirements specified in Division 01, indicate actual installed and 'as-built' conditions for:
 - a. Major raceway systems, size and location, for both exterior and interior.
 - b. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
 - 4. Approved changes and actual equipment and materials installed.

1.8 PROJECT CONDITIONS

- A. Exterior Environmental Conditions: Systems shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 20 to 122 deg F.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: 3000 feet.
- B. Interior Environmental Conditions: Systems shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 65 to 75 deg F.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: 3000 feet.
- C. Interruption of Existing Service(s): Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner/Owner's Representative no fewer than 5 working days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of service without Owner's/Owners Representative's written permission.

PART 2 - PRODUCTS

2.1 SLEEVES FOR PATHWAYS AND CABLES

A. Refer to Section 26 0500 "Common Work Results for Electrical Systems" for Sleeves for Pathways and Cables product information.

2.2 SLEEVE SEALS

A. Refer to Section 26 0500 "Common Work Results for Electrical Systems" for Sleeve Seals product information.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

3.2 IDENTIFICATION

A. Identify devices, cables, boxes, etc. as indicated in the individual sections included with the Division 27 specifications.

3.3 WORKMANSHIP

- A. Manufactured products, materials, equipment, and components shall be provided conditioned, applied, installed, connected, and tested in accordance with the manufacturer's specifications and printed instructions.
- B. The installation of all system components shall be carried out under the direction of qualified personnel. Appearance shall be considered as important as mechanical and electrical efficiency. Workmanship shall meet or exceed industry standards.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 27 0500

SECTION 27 1100 - COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Telecommunications mounting elements.
 - 2. Backboards.
 - 3. Telecommunications service entrance pathways.
 - 4. Grounding.
- B. Related Sections:
 - 1. Division 27 Section "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 - 2. Division 27 Section "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.
 - 3. Division 28 Section "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.
- C. Equipment Racks are specified in Division 28 Section "Security Electronics." Patch panels and owner provided equipment shall be mounted in equipment rack.

1.3 DEFINITIONS

- A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- B. BICSI: Building Industry Consulting Service International.
- C. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- D. LAN: Local area network.
- E. RCDD: Registered Communications Distribution Designer.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment cabinets. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.
- C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Field Inspector: Currently registered by BICSI as Commercial Installer, Level 2 to perform the on-site inspection.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. All work shall be performed in accordance with the following codes and industry standards, unless noted otherwise:
 - 1. NFPA 70 National Electrical Code, current version adopted by local or State AHJ.
 - 2. TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard, current version.
 - 3. TIA/EIA-569-B Commercial Building Standard for Telecommunications Pathways and Spaces, current version.
 - 4. TIA/EIA-606-A Administration Standard for Commercial Telecommunications Infrastructure, current version.
 - 5. J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.
 - 6. TIA-310- D Cabinets, Rack, and Associated Equipment

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install equipment frames and cable trays until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and work above ceilings is complete.

1.7 DESIGN CRITERIA

- A. The communications room installations are designed to be as similar as possible. The contractor shall coordinate with other trades to ensure similarity where possible.
- B. The location of the communication room(s) is intended to restrict the maximum horizontal subsystem wiring length (defined as a channel between a telecommunications room cross-connect termination field and a served telecommunications outlet) to 295-feet.

1.8 COORDINATION

- A. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers.
 - 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 - 2. Record agreements reached in meetings and distribute them to other participants.
 - 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 - 4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
- B. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Conduit and Boxes: To be provided by the Division 26 contractor. Coordinate with Division 26 for locations.

2.2 BACKBOARDS

- A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry."
- B. All walls of each telecommunications equipment room shall be lined with backboards. Install backboards 4" AFF and extend up to 100"AFF.
- C. Receptacles shall be installed flush with backboard. Coordinate with Division 26 contractor for proper installation following backboard installation.

2.3 POWER STRIPS

- A. Power Strips: Comply with UL 1363.
 - 1. Rack mounting.
 - 2. Six 20-A, 120-V ac, NEMA WD 6, Configuration 5-20R receptacles.
 - 3. LED indicator lights for power and protection status.
 - 4. LED indicator lights for reverse polarity and open outlet ground.
 - 5. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
 - 6. Cord connected with 15-foot line cord.
 - 7. Rocker-type on-off switch, illuminated when in on position.
 - 8. Peak Single-Impulse Surge Current Rating: 26 kA per phase.
 - 9. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all 3 modes shall be not more than 330 V.

2.4 GROUNDING

- A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.
- B. Telecommunications Main Bus Bar (Provided by Division 26):
 - 1. Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- C. Comply with ANSI-J-STD-607-A.

2.5 LABELING

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

3.1 TELECOMMUNICATIONS ROOMS

- A. All materials shall be installed as per the manufacturers' instructions, unless noted otherwise.
- B. Comply with NECA 1.
- C. Comply with BICSI TDMM for layout and installation of communications equipment rooms.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Backboards:
 - 1. Mount backboards with smooth side out, and with the bottom edge at approximately 6" above finished floor to a height of 8'-6" above finished floor.
 - 2. Paint plywood backboard with two (2) coats of paint.
 - 3. Coordinate with owner/owner's IT staff to determine color.
 - 4. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards.
 - 5. DO NOT PAINT OVER MANUFACTURER'S LABEL FOR FIRE RETARDANT PLYWOOD.
- F. Free-standing equipment racks shall be fastened to the communications room floor using a minimum of four 3/8 inch concrete anchors.
- G. Equipment racks shall be positioned according to drawings with a minimum of 3 feet clearance in front and back. The contractor shall field verify the dimensions of the room prior to installation of racks and report any discrepancies to the owner or owners representative.
- H. Vertical wire managers for free-standing racks shall be bolted to the side or front of the rack using the manufacturers recommended hardware.
- I. All equipment racks, cabinets, enclosures, conduits, and patch panels shall be bonded to the Telecommunications Grounding Busbar (TMG) (one per Telecommunications Room), which shall be bonded to the Telecommunications Main Grounding Busbar (TMGB), which shall be grounded to the main electrical ground in the main electrical room. Coordinate with electrical contractor. Coordinate exact routing and connection points with the electrical work. All surfaces that are used as a bond shall be filed to bare metal before completing connections.
- J. All tray sections shall be field cut to length as required with a minimum number of splice points. All field cuts shall be made using the manufacturers recommended equipment.
- K. All wire basket cable tray's shall be supported from the building structure using threaded rod and FAS type supports and shall be bonded to ground.

3.2 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "Penetration Firestopping."
- B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.3 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with ANSI-J-STD-607-A.
- C. Coordinate with the Division 26 contractor to locate grounding bus bar (bus bar provided by Division 26) to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar.

3.4 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
- B. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion of TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 3 level of administration including optional identification requirements of this standard.
- C. Labels shall be preprinted or computer-printed type.

END OF SECTION 27 1100

SECTION 27 1300 - COMMUNICATIONS BACKBONE CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pathways.
 - 2. UTP cable.
 - 3. 50/125-micrometer, optical fiber cabling.
 - 4. Cable connecting hardware, patch panels, and cross-connects.
 - 5. Cabling identification products.
- B. Related Sections:
 - 1. Division 28 Section "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.
- C. DEFINITIONS
- D. BICSI: Building Industry Consulting Service International.
- E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- F. EMI: Electromagnetic interference.
- G. IDC: Insulation displacement connector.
- H. LAN: Local area network.
- I. RCDD: Registered Communications Distribution Designer.
- J. UTP: Unshielded twisted pair.

1.3 BACKBONE CABLING DESCRIPTION

A. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects,

mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.

B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.4 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. Cabling administration drawings and printouts.
 - 3. Wiring diagrams to show typical wiring schematics including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 - 5. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
- C. Qualification Data: For Installer qualified layout technician, installation supervisor, and field inspector.
- D. Source quality-control reports.

- E. Field quality-control reports.
- F. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
- B. Testing Agency Qualifications: An NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. All work shall be performed in accordance with the following codes and industry standards unless noted otherwise:
 - 1. NFPA 70 National Electrical Code, current version adopted by local or State AHJ.
 - 2. TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard, current version.
 - 3. TIA/EIA-569-B Commercial Building Standard for Telecommunications Pathways and Spaces,
 - 4. TIA/EIA-606-A Administration Standard for Commercial Telecommunications Infrastructure.
 - 5. J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.
 - 6. IEEE 241 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings" pertaining to communication systems.
- F. Grounding: Comply with ANSI-J-STD-607-A.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 - 2. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.9 COORDINATION

- A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate layout and installation of telecommunications pathways with other trades prior to start of construction.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Conduit and Boxes: To be provided by the Division 26 contractor. Coordinate with Division 26 for locations.

2.2 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden CDT Inc.; Electronics Division.
 - 2. Berk-Tek; a Nexans company.
 - 3. CommScope, Inc.
 - 4. Draka USA.
 - 5. Genesis Cable Products; Honeywell International, Inc.
 - 6. KRONE Incorporated.
 - 7. Mohawk; a division of Belden CDT.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Superior Essex Inc.

- 10. SYSTIMAX Solutions; a CommScope Inc. brand.
- 11. 3M.
- 12. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: 100-ohm, 50-pair category 3 UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- C. Description: 100-ohm, category 5e UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- D. Description: 100-ohm, category 6 UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- E. Description: 100-ohm, augmented category 6 (i.e. 6a) UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 6a.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
 - 4. Maximum insertion loss of 2.0 dB/100M at 1 MHz, 19.0 dB/100M at 100 MHz, 31.0 dB/100M at 250 MHz and 45.3 dB/100m at 500 MHz.
 - 5. Minimum PSNEXT of 72.3 dB at 1 MHz, 42.3 dB at 100 MHz, 36.3 dB at 250 MHz and 31.2 dB at 500 MHz.
 - Cable balance: LCL/TCL greater than 50 dB @ 100 m at 1 MHz, 30.0 dB @ 100m at 100 MHz and 26.0 dB @ 250 MHz. EL TCTL greater than 30 dB @ 100m at 1 MHz, and 5.5 dB @ 100m at 31.25 MHz
 - 7. Minimum PS-ANEXT of 80.0 dB at 1 MHz, 60.0 dB at 100 MHz, 54.0 dB at 250 MHz and 49.5 dB at 500 MHz.
 - 8. Minimum PS-AELFEXT of 77.0 dB at 1 MHz, 37.0 dB at 100 MHz, 29.0 dB at 250 MHz and 23.0 dB at 500 MHz.
 - 9. Electrical characteristics must be characterized to 750 MHz.
 - 10. Cable must be third party verified by ETL.
 - 11. 0.300 inch max cable diameter
- F. Cabling Types:
 - 1. Intra-building cabling:

- a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
- b. Communications, Riser Rated: Type CMR, complying with UL 1666.
- 2. Inter-building cabling above ground:
 - a. Communications, Riser Rated: Type CMR, complying with UL 1666
- 3. Inter-building, underground cabling:
 - a. Communications, Riser Rated, Type CMR with water blocking gel complying with UL1666.

2.3 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Technology Systems Industries, Inc.
 - 2. Dynacom Corporation.
 - 3. Hubbell Premise Wiring.
 - 4. KRONE Incorporated.
 - 5. Leviton Voice & Data Division.
 - 6. Molex Premise Networks; a division of Molex, Inc.
 - 7. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 8. Panduit Corp.
 - 9. Siemon Co. (The).
 - 10. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 5e, Category 6, or augmented Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- D. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.
- E. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- F. Patch Cords: Factory-made, 4-pair cables in 48-inch lengths; terminated with 8-position modular plug at each end.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 or 6a performance. Patch cords shall have latch guards to protect against snagging.
- 2. Patch cords shall have color-coded boots for circuit identification.

2.4 OPTICAL FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berk-Tek; a Nexans company.
 - 2. CommScope, Inc.
 - 3. Corning Cable Systems.
 - 4. General Cable Technologies Corporation.
 - 5. Mohawk; a division of Belden CDT.
 - 6. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 7. Optical Connectivity Solutions Division; Emerson Network Power.
 - 8. Superior Essex Inc.
 - 9. SYSTIMAX Solutions; a CommScope Inc. brand.
 - 10. 3M.
 - 11. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: Multimode, 50/125-micrometer, nonconductive, tight buffer, optical fiber cable.
 - 1. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 2. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70.
 - 4. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 5. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- C. Cabling Types:
 - 1. Intra-building cabling, comply with ICEA S-83-596 for mechanical properties.
 - a. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - b. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - 2. Inter-building above ground, comply with ICEA S-87-640 for mechanical properties.
 - a. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - 3. Inter-building below ground, comply with ICEA S-87-640 for mechanical properties.
 - a. Riser Rated, Nonconductive: Type OFNR, with water blocking gel, complying with UL1666.
- D. Jacket:
 - 1. Jacket Color: Orange for 50/125-micrometer cable.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.5 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ADC.
 - 2. American Technology Systems Industries, Inc.
 - 3. Berk-Tek; a Nexans company.
 - 4. Corning Cable Systems.
 - 5. Dynacom Corporation.
 - 6. Hubbell Premise Wiring.
 - 7. Molex Premise Networks; a division of Molex, Inc.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Optical Connectivity Solutions Division; Emerson Network Power.
 - 10. Siemon Co. (The).
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit an additional 50% expansion.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.
- D. Cable Connecting Hardware:
 - 1. Comply with Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 2. Quick-connect, simplex and duplex, Type SC, Type ST, Type LC, and Type MT-RJ connectors. Insertion loss not more than 0.75 dB. Coordinate with owner for correct connector types for new hardware prior to bid.
 - 3. Coordinate with the existing cable connecting hardware to provide the correct connectors required.

2.6 GROUNDING

- A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.
- B. Comply with ANSI-J-STD-607-A.

2.7 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.8 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Wiring Method:
 - 1. Where backbone cabling is routed between structures or buildings install cables in raceways below ground. Provide cabling suitable for below ground installation.
 - 2. Where backbone cabling is routed underground install cables in raceways. Provide cabling suitable for below ground installation.
 - 3. Where backbone cabling is routed interior to a building or structure the following wiring method will be used:
 - a. Where located in accessible ceiling spaces backbone cabling shall be installed in Jhooks or other cable supporting equipment specified elsewhere. Cable supporting equipment shall be provided a minimum of every 60".
 - b. Where routed between floors, cabling shall be installed in conduit sleeves which shall extend a minimum of 4" from the top of the floor and 4" from the bottom of the structure below.
 - c. Where routed through drop or suspended ceilings, cabling shall be installed in a conduit sleeve which shall be extended a minimum of 4" from the top and bottom of the ceiling. This sleeve shall be provided with a protective bushing on both ends to protect cabling.
 - d. Where located in non-accessible ceiling spaces cabling shall be installed in conduit sleeves which shall extend a minimum of 4" from the beginning and end of the non-accessible ceiling spaces. The Division 27 contractor shall coordinate with the Division 26 contractor for adequate number and size of conduits.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 4. Install plenum cable in environmental air spaces, including plenum ceilings.
- 5. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- 6. It shall be the responsibility of the Division 27 contractor to coordinate with the Division 26 contractor for sleeve and cabling installation.
- B. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
- B. Comply with requirements for backbone cabling installation specified in Division 27 Section "Communications Equipment Room Fittings."

3.3 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 48 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 - 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 10. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
 - 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

- 12. Use only practices and tools recommended by the manufacturer to terminate all conductors at connecting blocks. Stuffer caps shall be used. However, stuffer caps shall not be used as a termination tool. Or other non-approved termination means shall not be used.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
- D. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- E. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- F. Group connecting hardware for cables into separate logical fields.
- G. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 - 3. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "Penetration Firestopping." Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

- B. Comply with ANSI-J-STD-607-A.
- C. Coordinate with Division 26 for ground bus bar installation. Division 26 contractor shall provide ground bar.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 - 1. Administration Class: 3.
 - 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
- B. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion about TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 3 level of administration including optional identification requirements of this standard.
- C. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- D. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- E. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 - 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a buildingmounted device with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.

- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- F. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 - 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 27 1300

SECTION 27 1500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pathways.
 - 2. UTP cabling.
 - 3. Multiuser telecommunications outlet assemblies.
 - 4. Cable connecting hardware, patch panels, and cross-connects.
 - 5. Telecommunications outlet/connectors.
 - 6. Cabling system identification products.
 - 7. Cable management system.
- B. Related Sections:
 - 1. Division 27 Section "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 - 2. Division 28 Section "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- B. BICSI: Building Industry Consulting Service International.
- C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.
- D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
- E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- F. EMI: Electromagnetic interference.
- G. IDC: Insulation displacement connector.

COMMUNICATIONS HORIZONTAL CABLING

- H. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- I. LAN: Local area network.
- J. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
- K. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
- L. RCDD: Registered Communications Distribution Designer.
- M. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.
- N. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.
- O. UTP: Unshielded twisted pair.

1.4 HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.
 - 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 - 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
 - 4. Splitters shall not be installed as part of the optical fiber cabling.
- B. A work area is approximately 100 sq. ft, and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet in the horizontal cross-connect.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.
1.6 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. Cabling administration drawings and printouts.
 - 3. Wiring diagrams to show typical wiring schematics, including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
- C. Samples: For workstation outlets, jacks, jack assemblies, in specified finish, one for each size and outlet configuration, and faceplates for color selection and evaluation of technical features if requested by the architect or engineer.
- D. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- E. Source quality-control reports.
- F. Field quality-control reports.
- G. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
- B. Testing Agency Qualifications: An NRTL.

- 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. All work shall be performed in accordance with the following codes and industry standards unless noted otherwise:
 - 1. NFPA 70 National Electrical Code, current version adopted by local or State AHJ.
 - 2. TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard, current version.
 - 3. TIA/EIA-569-B Commercial Building Standard for Telecommunications Pathways and Spaces,
 - 4. TIA/EIA-606-A Administration Standard for Commercial Telecommunications Infrastructure.
 - 5. J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.
 - 6. IEEE 241 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings" pertaining to communication systems.
- F. Grounding: Comply with ANSI-J-STD-607-A.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test each pair of UTP cable for open and short circuits.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

- B. Coordinate layout and installation of telecommunications pathways with other trades prior to start of construction.
- C. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.11 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Patch-Panel Units: One of each type.
 - 2. Connecting Blocks: One of each type.
 - 3. Device Plates: One of each type.
 - 4. Multiuser Telecommunications Outlet Assemblies: One of each type.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Conduit and Boxes: To be provided by the Division 26 contractor. Coordinate with Division 26 for locations.

2.2 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden CDT Inc.; Electronics Division.
 - 2. Berk-Tek; a Nexans company.
 - 3. CommScope, Inc.
 - 4. Draka USA.
 - 5. Genesis Cable Products; Honeywell International, Inc.
 - 6. KRONE Incorporated.
 - 7. Mohawk; a division of Belden CDT.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Superior Essex Inc.
 - 10. SYSTIMAX Solutions; a CommScope, Inc. brand.
 - 11. 3M.
 - 12. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: 100-ohm, 50-pair category 3 UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 1. Comply with ICEA S-90-661 for mechanical properties.
- 2. Comply with TIA/EIA-568-B.1 for performance specifications.
- 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- C. Description: 100-ohm, category 5e UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- D. Description: 100-ohm, category 6 UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- E. Description: 100-ohm, augmented category 6 (i.e. 6a) UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 6a.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
 - 4. Maximum insertion loss of 2.0 dB/100M at 1 MHz, 19.0 dB/100M at 100 MHz, 31.0 dB/100M at 250 MHz and 45.3 dB/100m at 500 MHz.
 - 5. Minimum PSNEXT of 72.3 dB at 1 MHz, 42.3 dB at 100 MHz, 36.3 dB at 250 MHz and 31.2 dB at 500 MHz.
 - Cable balance: LCL/TCL greater than 50 dB @ 100 m at 1 MHz, 30.0 dB @ 100m at 100 MHz and 26.0 dB @ 250 MHz. EL TCTL greater than 30 dB @ 100m at 1 MHz, and 5.5 dB @ 100m at 31.25 MHz
 - 7. Minimum PS-ANEXT of 80.0 dB at 1 MHz, 60.0 dB at 100 MHz, 54.0 dB at 250 MHz and 49.5 dB at 500 MHz.
 - 8. Minimum PS-AELFEXT of 77.0 dB at 1 MHz, 37.0 dB at 100 MHz, 29.0 dB at 250 MHz and 23.0 dB at 500 MHz.
 - 9. Electrical characteristics must be characterized to 750 MHz.
 - 10. Cable must be third party verified by ETL.
 - 11. 0.300 inch max cable diameter
- F. Cabling Types:
 - 1. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - 2. Communications Non-Plenum Rated: General Purpose Rated: Type CM,

2.3 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 1. American Technology Systems Industries, Inc.
- 2. Dynacom Corporation.
- 3. Hubbell Premise Wiring.
- 4. KRONE Incorporated.
- 5. Leviton Voice & Data Division.
- 6. Molex Premise Networks; a division of Molex, Inc.
- 7. Nordex/CDT; a subsidiary of Cable Design Technologies.
- 8. Panduit Corp.
- 9. Siemon Co. (The).
- 10. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 5e, Category 6, or augmented Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
- D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.
- F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- G. Patch Cords: Factory-made, 4-pair cables in 48-inch lengths; terminated with 8-position modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 or 6a performance. Patch cords shall have latch guards to protect against snagging.
 - 2. Non-Category 6 or 6a Patch cords shall have color-coded boots for circuit identification.

2.4 TELECOMMUNICATIONS OUTLET/CONNECTORS

- A. Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-B.1.
- B. Workstation Outlets: Refer to drawings for number of ports and for backbox size.
 - 1. Plastic Faceplate: Coordinate color and material with Division 26 Section "Wiring Devices." Division 27 contractor shall provide faceplates.

- 2. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 - a. Flush mounting jacks, positioning the cord at a 45-degree angle.
- 3. Legend: Snap-in, clear-label covers and machine-printed paper inserts.

2.5 GROUNDING

- A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.
- B. Comply with ANSI-J-STD-607-A.

2.6 IDENTIFICATION PRODUCTS

- A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

2.7 SOURCE QUALITY CONTROL

- A. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- B. Factory test UTP cables according to TIA/EIA-568-B.2.
- C. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- D. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- 1. Where horizontal cabling is routed underground install cables in raceways. Provide cabling suitable for below ground installation.
- 2. Where horizontal cabling is routed interior to a building or structure the following wiring method will be used:

- a. Where located in accessible ceiling spaces horizontal cabling shall be installed in J-hooks or other cable supporting equipment specified elsewhere. Cable supporting equipment shall be provided a minimum of every 60".
- b. Where routed through areas accessible to inmates cabling shall be installed in conduit sleeves which shall extend a minimum of 4" from the beginning and end of the inmate-accessible ceiling spaces. The Division 27 contractor shall coordinate with the Division 26 contractor for adequate number and size of conduits.
- c. Where routed through drop or suspended ceilings, cabling shall be installed in a conduit sleeve which shall be extended a minimum of 4" from the top and bottom of the ceiling. This sleeve shall be provided with a protective bushing on both ends to protect cabling.
- d. Where located in non-accessible ceiling spaces cabling shall be installed in conduit sleeves which shall extend a minimum of 4" from the beginning and end of the non-accessible ceiling spaces. The Division 27 contractor shall coordinate with the Division 26 contractor for adequate number and size of conduits.
- 3. Install plenum cable in environmental air spaces, including plenum ceilings.
- 4. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
- B. Comply with requirements for horizontal cabling installation specified in Division 27 Section "Communications Equipment Room Fittings."

3.3 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.

- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 48 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
- 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 10. In the communications equipment room, install a 10-foot- long service loop on each end of cable.
- 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- 12. Use only practices and tools recommended by the manufacturer to terminate all conductors at connecting blocks. Stuffer caps shall be used. However, stuffer caps shall not be used as a termination tool. Other non-approved termination means shall not be used.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
- D. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- E. Group connecting hardware for cables into separate logical fields.
- F. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 - 3. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "Penetration Firestopping."
- B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with ANSI-J-STD-607-A.
- C. Coordiante with Division 26 for ground bar installation. Division 26 contractor shall provide ground bar.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 - 1. Administration Class: 3.
 - 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect asbuilt conditions.
- C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 3 level of administration, including optional identification requirements of this standard.
- D. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 - 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.

- a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a buildingmounted device shall be identified with name and number of particular device as shown.
- b. Label each unit and field within distribution racks and frames.
- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- 6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.
- E. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 - 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually confirm Category 5e, Category 6, augmented category 6 (i.e. 6a), marking of outlets, cover plates, outlet/connectors, and patch panels.
 - 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 5. UTP Performance Tests:
 - a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 - 1) Wire map.

- 2) Length (physical vs. electrical, and length requirements).
- 3) Insertion loss.
- 4) Near-end crosstalk (NEXT) loss.
- 5) Power sum near-end crosstalk (PSNEXT) loss.
- 6) Equal-level far-end crosstalk (ELFEXT).
- 7) Power sum equal-level far-end crosstalk (PSELFEXT).
- 8) Return loss.
- 9) Propagation delay.
- 10) Delay skew.
- 6. Optical Fiber Cable Performance Tests: Perform optical fiber end-to-end link tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.3.
- C. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- D. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 27 1500

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

Pages

Section 28 0500	Common Work Results for Electronic Safety and Security	 9
Section 28 0513	Conductors and Cables for Electronic Safety and Security	 17
Section 28 1300	Access Control	 32
Section 28 1600	Intrusion Detection	 21
Section 28 3111	Digital, Addressable Fire-Alarm System	 16

SECTION 28 0500 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Electronic safety and security equipment coordination and installation.
- 2. Electronic safety and security identification requirements.
- 3. Concrete bases.
- 4. Common electronic safety and security installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.
- C. Provide: The term "provide" means "to furnish and install, ready for the intended use and in complete operating condition."
- D. Install: The term "install" is used to describe operations at project site including the actual "unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations."
- E. Directed: Terms such as "directed," "requested," "authorized," "selected," "approved," "required," and "permitted" mean "directed by the Architect," "requested by the Architect," and similar phrases.
- F. Approve: The term "approved," where used in conjunction with the Architect's action on the Contractor's submittals, applications and requests, is limited to the Architect's duties and responsibilities as stated in the Conditions of the Contracts.
- G. Indicated: The term "indicated" refers to graphic representations, notes or schedules on the Drawings, or other Paragraphs or Schedules in the Specifications, and similar requirements in the Contract Documents. Where terms such as "shown," "noted," "scheduled," and "specified" are used, it is to help the reader locate the reference; no limitation on location is intended.

1.4 SUBMITTALS

- A. General: Follow the procedures specified in Division 01 Section "Submittals."
- B. Prior Approvals:
 - 1. Submit for prior approval on Substitution Request Forms. Only written requests on these forms with complete submittal data will be considered.
 - 2. Refer to each Section for specific submittal requirements.
 - 3. Prior approval does not automatically mean equipment is approved. Final approval of all equipment and materials shall be determined during shop drawings review. Any changes required due to substitution are the Contractor's responsibility.

1.5 QUALITY ASSURANCE

- A. All workmen on this project shall be thoroughly knowledgeable of all applicable codes related to all systems specified by Division 28 for this project. All installations shall be performed by skilled tradesmen fully aware of the latest techniques, practices, and standards of the industry. Haphazard or poor installation practice will be cause for rejection of work.
- B. Good workmanship and appearance shall be considered important. Carefully lay out all work in advance to install in a neat and good workmanship-like manner all in accordance with recognized practices and standards of the industry.

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. In preparation of the contract documents, a reasonable effort has been made to provide layouts and connections based on selected and specified manufacturers' equipment. Since physical space, connections, equipment arrangements and other requirements may vary according to each manufacturer, the final responsibility for connections, initial access and proper fit rests with the Contractor.
- C. Coordinate with the Division 26 contractor for required sleeve locations for all wiring and conduit(s) required. Sleeves shall be used when penetrating all walls, ceilings, and floors. Sleeves shall be provided by the Division 26 contractor, but sized and located by the Division 27 contractor.

- D. Sequence, coordinate, and integrate the installation of materials and equipment for efficient flow of the Work. Coordinate the installation of large equipment requiring positioning before closing in the building.
- E. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- F. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
- G. Special boxes furnished by Division 28 and installed by Division 26 shall be coordinated. The Division 28 contractor shall initiate the coordination in a timely manner.
- H. Scaled and figured locations are approximate only. Before proceeding with work, carefully check and verify with building dimensions on architectural drawings, and be responsible for properly fitting equipment and materials together and to the structure in spaces provided.
- I. Drawings are essentially diagrammatic and indicate the general arrangement of equipment. Carefully study drawings and premises in order to determine best methods, exact locations, routes, building obstructions, etc., to install apparatus and equipment. Install apparatus and equipment in manner and locations to avoid obstructions, preserve headroom, and keep openings and passageways clear.
- J. Record 'As-Built' Documents:
 - 1. Prepare and record 'as-built' documents in accordance with the requirements in Division 01 Section "Project Closeout."
 - 2. Maintain a separate set of Division 28 drawings at the job site which is not used for construction purposes. This set shall be kept updated by neatly marking all changes and deviations made during construction. Use a color that contrasts with the drawings. This same set of drawings shall be made available at all times during construction for review at any time by the Architect/Engineer.
 - 3. In addition to the requirements specified in Division 01, indicate actual installed and 'as-built' conditions for:
 - a. Major raceway systems, size and location, for both exterior and interior.
 - b. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
 - 4. Approved changes and actual equipment and materials installed.

1.7 PROJECT CONDITIONS

- A. Exterior Environmental Conditions: Systems shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 20 to 122 deg F.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: 3000 feet.

- B. Interior Environmental Conditions: Systems shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 65 to 75 deg F.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: 3000 feet.
- C. Interruption of Existing Service(s): Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner/Owner's Representative no fewer than 5 working days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of service without Owner's/Owners Representative's written permission.

PART 2 - PRODUCTS

2.1 IDENTIFICATION

- A. Identification Devices: A single type of identification product for each application category. Use colors prescribed by ANSI A13.1, NFPA 70, and these Specifications.
- B. Raceway and Cable Labels: Comply with ANSI A13.1, Table 3, for minimum size of letters for legend and minimum length of color field for each raceway and cable size.
 - 1. Type: Preprinted, flexible, self-adhesive, vinyl. Legend is overlaminated with a clear, weather- and chemical-resistant coating.
 - 2. Color: Black letters on orange background.
 - 3. Legend: Indicates voltage.
- C. Colored Adhesive Marking Tape for Raceways, Wires, and Cables: Self-adhesive vinyl tape, not less than 1 inch wide by 3 mils thick.
- D. Underground Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape with the following features:
 - 1. Not less than 6 inches wide by 4 mils thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend that indicates type of underground line.
- E. Tape Markers for Wire: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- F. Color-Coding Cable Ties: Type 6/6 nylon, self-locking type. Colors to suit coding scheme.

- G. Engraved-Plastic Labels, Signs, and Instruction Plates: Engraving stock, melamine plastic laminate punched or drilled for mechanical fasteners 1/16-inch minimum thickness for signs up to 20 sq. in. and 1/8-inch minimum thickness for larger sizes.
- H. Interior Warning and Caution Signs: Comply with 29 CFR, Chapter XVII, Part 1910.145. Preprinted, aluminum, baked-enamel-finish signs, punched or drilled for mechanical fasteners, with colors, legend, and size appropriate to the application.
- I. Exterior Warning and Caution Signs: Comply with 29 CFR, Chapter XVII, Part 1910.145. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch, galvanized-steel backing, with colors, legend, and size appropriate to the application. 1/4-inch grommets in corners for mounting.
- J. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32 stainless-steel machine screws with nuts and flat and lock washers. Applying the nameplates by self-adhesive only will be unacceptable.

2.2 TOUCHUP PAINT

- A. For Equipment: Equipment manufacturer's paint selected to match installed equipment finish.
- B. Galvanized Surfaces: Zinc-rich paint recommended by item manufacturer.

PART 3 - EXECUTION

- 3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION
 - A. Comply with NECA 1.
 - B. Comply with NFPA.
 - C. Comply with EIA/TIA standards.
 - D. Comply with BICSI standards.
 - E. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
 - F. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
 - G. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

- H. Right of Way: Give to piping systems installed at a required slope.
- 3.2 SLEEVE INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS
 - A. Sleeve installation shall be provided by Division 26.

3.3 SLEEVE-SEAL INSTALLATION

A. Sleeve-seal installation shall be provided by Division 26.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 IDENTIFICATION MATERIALS AND DEVICES

- A. Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Coordinate names, abbreviations, colors, and other designations used for electrical identification with corresponding designations indicated in the Contract Documents or required by codes and standards. Use consistent designations throughout Project. Provide identification for the following electrical equipment:
 - 1. Fire Alarm Control Units.
 - 2. Remote Fire Alarm Control Units.
 - 3. Addressable Fire Alarm Devices:
 - a. Label each according to final device address list.
 - b. Labeling shall occur following final project programming.
 - 4. Junction boxes provided by Division 26:
 - a. Label fire alarm junction boxes with applicable loop or circuit number.
 - b. Security junction boxes.
 - 5. Cabinets, and enclosures with applicable system.
 - 6. As indicated on the drawings.
- C. Tag or label conductors as follows:
 - 1. Multiple Circuits: Where multiple circuits are present in the same box or enclosure, label each conductor or cable using tube markers at terminations and at intermediate locations where conductors appear in wiring boxes, troughs, and control cabinets. Use consistent letter/number conductor designations throughout on wire/cable tube markers.

D. Tag and label circuits designated to be extended in the future. Identify source and circuit numbers in each cabinet, pull and junction box, and outlet box.

3.6 CONCRETE BASES

A. Construct concrete bases for equipment indicated. Follow supported equipment manufacturer's anchorage recommendations and setting templates for anchor-bolt and tie locations, unless otherwise indicated. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.7 DEMOLITION

- A. All temporary and remodeling work shall be considered a part of this contract and no extra charges will be allowed. This shall include all items, material or equipment and labor necessary to meet the requirements and intent of the project.
- B. Prior to submitting bid proposal, the Contractor shall have had visited and examined the construction site. He shall be familiar with the existing conditions under which he will have to operate and which will in any way affect the work under this contract. No subsequent allowance will be made in this connection in behalf of the contractor for any error or negligence on his part.
- C. Certain remodeling of the existing facilities will be required. Existing conduit runs are generally not shown, although an attempt has been made to show some existing conditions, from which information has been taken in regard to existing record drawings pertaining to this particular project. The drawings showing location of existing equipment, outlets, devices, etc., are approximate only (field verify).
- D. The Contractor shall conceal all work where possible. Where exposed work is necessary in finished areas, the Contractor shall provide non-circular manufactured surface raceways as applicable but only after specific approval in writing is obtained from the owner or Architect/Engineer.
- E. Existing wiring (lighting, power, low-voltage, special systems, etc.) which may be disturbed and interrupted during construction, of which the wiring continuity is to be maintained, shall be restored to its original operating condition. Although an attempt has been made on the plans to indicate where some of these conditions may most likely occur, the Contractor shall comply where it is necessary to extend new conduits and wiring, installation of new junction boxes, etc. to provide complete continuity of each electrical system affected.
- F. Where existing outlets, devices, equipment, etc. are removed and replaced, provide new item or new device at same location. Existing wiring may be re-used only where noted on the drawings, otherwise new wiring shall be installed in the existing conduits. Clean out conduit and remove all debris from the existing j-boxes prior to installation of new wiring, devices or equipment. Provide new coverplates for all wiring devices.
- G. Where outlets are not to be re-used and if it is not possible to remove the outlet, provide a blank high impact nylon cover or stainless steel cover on the outlet. The cover shall be suitable for its use and shall match the surrounding wall finishes.

- H. Where existing equipment, devices, etc. are removed and the cabling is not intended to be re-used, all conduit and wiring shall be completely removed from its source device to the item(s)/equipment being removed. Where existing conduit is not being re-used, abandon the conduit and remove conduit completely. Where it is impossible to remove the conduit such as in masonry walls, concrete floors, etc. it shall be cut off flush with the wall or floor and capped or plugged.
- I. Where copper conductors, equipment/material, etc. is designated to be removed and is deemed to be salvageable by the Owner, the Contractor shall properly transport and store the items as directed by the Owner.
- J. Prior to progressing with any new installation or rough-ins, the Contractor shall study the drawings and carefully examine all existing conditions and obstructions, to determine the best method of installation and routing. The installation shall be installed in accordance to the N.E.C., EIA/TIA, and BICSI standards in a neat and workmanship-like manner.
- K. All connections requiring an outage of a system shall be made during an approved time limit. Changeovers shall be as short a duration as possible and shall not interfere with normal operation of the Owner's facilities. Notice shall be required in advance of a shutdown for any system changeover, and such a changeover shall be done during hours as directed by Owner. Work shall be scheduled so that at no time will any fire alarm zone be out of service. Provide necessary temporary fire alarm or security systems to accomplish this requirement. Fire watch(es) may be required and shall be provided by Division 28 during the construction process as determined by the sequence, schedule, or authorities having jurisdiction.

3.8 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled craftsmen of trades involved.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled craftsmen of trades involved.

3.9 FIELD QUALITY CONTROL

- A. Inspect installed components for damage and faulty work, including the following:
 - 1. Supporting devices for components.
 - 2. Identification.
 - 3. Concrete bases.
 - 4. Cutting and patching for Division 28 construction.
 - 5. Touchup painting.

3.10 REFINISHING AND TOUCHUP PAINTING

- A. Refinish and touch up paint. Paint materials and application requirements are specified in Division 09 Section "Painting."
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 4. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.
- 3.11 CLEANING AND PROTECTION
 - A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
 - B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 28 0500

SECTION 28 0513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pathways.
 - 2. UTP cable.
 - 3. 50/125-micrometer, optical fiber cabling.
 - 4. Coaxial cable.
 - 5. RS-232 cabling.
 - 6. RS-485 cabling.
 - 7. Low-voltage control cabling.
 - 8. Control-circuit cabling.
 - 9. Fire alarm wire and cable.
 - 10. Cable connecting hardware, patch panels, and cross-connects.
 - 11. Cabling identification products.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. EMI: Electromagnetic interference.
- D. IDC: Insulation displacement connector.
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. RCDD: Registered Communications Distribution Designer.
- G. UTP: Unshielded twisted pair.

1.4 PERFORMANCE REQUIREMENTS

A. General Performance: Security system UTP and fiber-optic cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. Cabling administration drawings and printouts.
 - 3. Wiring diagrams to show typical wiring schematics including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 - 5. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - c. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
- C. Qualification Data: For Installer qualified layout technician, installation supervisor, and field inspector.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
- B. Testing Agency Qualifications: An NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. All work shall be performed in accordance with the following codes and industry standards unless noted otherwise:
 - 1. NFPA 70 National Electrical Code, current version adopted by local or State AHJ.
 - 2. TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard, current version.
 - 3. TIA/EIA-569-B Commercial Building Standard for Telecommunications Pathways and Spaces,
 - 4. TIA/EIA-606-A Administration Standard for Commercial Telecommunications Infrastructure.
 - 5. J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.
 - 6. IEEE 241 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings" pertaining to communication systems.
- F. Grounding: Comply with ANSI-J-STD-607-A.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.

- 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
- 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.9 COORDINATION

- A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate layout and installation of telecommunications pathways with other trades prior to start of construction.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Conduit and Boxes: To be provided by the Division 26 contractor. Coordinate with Division 26 for locations.

2.2 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden CDT Inc.; Electronics Division.
 - 2. Berk-Tek; a Nexans company.
 - 3. CommScope, Inc.
 - 4. Draka USA.
 - 5. Genesis Cable Products; Honeywell International, Inc.
 - 6. KRONE Incorporated.
 - 7. Mohawk; a division of Belden CDT.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Superior Essex Inc.
 - 10. SYSTIMAX Solutions; a CommScope Inc. brand.
 - 11. 3M.

- 12. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: 100-ohm, 50-pair category 3 UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- C. Description: 100-ohm, category 5e UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- D. Description: 100-ohm, category 6 UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 5e.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
- E. Description: 100-ohm, augmented category 6 (i.e. 6a) UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.2, Category 6a.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.
 - 4. Maximum insertion loss of 2.0 dB/100M at 1 MHz, 19.0 dB/100M at 100 MHz, 31.0 dB/100M at 250 MHz and 45.3 dB/100m at 500 MHz.
 - 5. Minimum PSNEXT of 72.3 dB at 1 MHz, 42.3 dB at 100 MHz, 36.3 dB at 250 MHz and 31.2 dB at 500 MHz.
 - Cable balance: LCL/TCL greater than 50 dB @ 100 m at 1 MHz, 30.0 dB @ 100m at 100 MHz and 26.0 dB @ 250 MHz. EL TCTL greater than 30 dB @ 100m at 1 MHz, and 5.5 dB @ 100m at 31.25 MHz
 - 7. Minimum PS-ANEXT of 80.0 dB at 1 MHz, 60.0 dB at 100 MHz, 54.0 dB at 250 MHz and 49.5 dB at 500 MHz.
 - 8. Minimum PS-AELFEXT of 77.0 dB at 1 MHz, 37.0 dB at 100 MHz, 29.0 dB at 250 MHz and 23.0 dB at 500 MHz.
 - 9. Electrical characteristics must be characterized to 750 MHz.
 - 10. Cable must be third party verified by ETL.
 - 11. 0.300 inch max cable diameter
- F. Cabling Types:
 - 1. Intra-building cabling:
 - a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.

- b. Communications, Riser Rated: Type CMR, complying with UL 1666.
- 2. Inter-building cabling above ground:
 - a. Communications, Riser Rated: Type CMR, complying with UL 1666
- 3. Inter-building, underground cabling:
 - a. Communications, Riser Rated, Type CMR with water blocking gel complying with UL1666.

2.3 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Technology Systems Industries, Inc.
 - 2. Dynacom Corporation.
 - 3. Hubbell Premise Wiring.
 - 4. KRONE Incorporated.
 - 5. Leviton Voice & Data Division.
 - 6. Molex Premise Networks; a division of Molex, Inc.
 - 7. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 8. Panduit Corp.
 - 9. Siemon Co. (The).
 - 10. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 5e, Category 6, or augmented Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- D. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.
- E. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- F. Patch Cords: Factory-made, 4-pair cables in 48-inch lengths; terminated with 8-position modular plug at each end.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 or 6a performance. Patch cords shall have latch guards to protect against snagging.
- 2. Patch cords shall have color-coded boots for circuit identification.

2.4 OPTICAL FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berk-Tek; a Nexans company.
 - 2. CommScope, Inc.
 - 3. Corning Cable Systems.
 - 4. General Cable Technologies Corporation.
 - 5. Mohawk; a division of Belden CDT.
 - 6. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 7. Optical Connectivity Solutions Division; Emerson Network Power.
 - 8. Superior Essex Inc.
 - 9. SYSTIMAX Solutions; a CommScope Inc. brand.
 - 10. 3M.
 - 11. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: Multimode, 50/125-micrometer, nonconductive, tight buffer, optical fiber cable.
 - 1. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 2. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70.
 - 4. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 5. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- C. Cabling Types:
 - 1. Intra-building cabling, comply with ICEA S-83-596 for mechanical properties.
 - a. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - b. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - 2. Inter-building above ground, comply with ICEA S-87-640 for mechanical properties.
 - a. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - 3. Inter-building below ground, comply with ICEA S-87-640 for mechanical properties.
 - a. Riser Rated, Nonconductive: Type OFNR, with water blocking gel, complying with UL1666.
- D. Jacket:
 - 1. Jacket Color: Orange for 50/125-micrometer cable.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.5 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ADC.
 - 2. American Technology Systems Industries, Inc.
 - 3. Berk-Tek; a Nexans company.
 - 4. Corning Cable Systems.
 - 5. Dynacom Corporation.
 - 6. Hubbell Premise Wiring.
 - 7. Molex Premise Networks; a division of Molex, Inc.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Optical Connectivity Solutions Division; Emerson Network Power.
 - 10. Siemon Co. (The).
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit an additional 50% expansion.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.
- D. Cable Connecting Hardware:
 - 1. Comply with Optical Fiber Connector Internateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 2. Quick-connect, simplex and duplex, Type SC Type ST Type LC Type MT-RJ connectors. Insertion loss not more than 0.75 dB.
 - 3. Coordinate with the existing cable connecting hardware to provide the correct connectors required.

2.6 COAXIAL CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire Company.
 - 2. Belden CDT Inc.; Electronics Division.
 - 3. Coleman Cable, Inc..
 - 4. CommScope, Inc.
 - 5. Draka USA.

- B. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- C. RG-6/U: NFPA 70, Type CATV or CATVR.
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- D. RG-6/U: NFPA 70, Type CATVP (Plenum Rated).
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black plenum rated jacket.
 - 4. Suitable for indoor installations.
- E. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70, "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Cable: Type CATV.
 - 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - 3. CATV Riser Rated: Type CATVR, complying with UL 1666.

2.7 COAXIAL CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aim Electronics; a brand of Emerson Electric Co.
 - 2. Leviton Voice & Data Division.
 - 3. Siemon Co. (The).
- B. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.8 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.9 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM[or CMG].
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.10 LOW-VOLTAGE CONTROL CABLE

- A. Paired Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, [No. 16 AWG, stranded (19x29)] [and] [No. 18 AWG, stranded (19x30)] tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, [No. 16 AWG, stranded (19x29)] [and] [No. 18 AWG, stranded (19x30)] tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.

2.11 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in raceway.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in raceway.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.12 FIRE ALARM WIRE AND CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Comtran Corporation.
 - 2. Draka Cableteq USA.
 - 3. Genesis Cable Products; Honeywell International, Inc.
 - 4. Rockbestos-Suprenant Cable Corp.
 - 5. West Penn Wire; a brand of Belden Inc.
- B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- C. Signaling Line Circuits: Twisted, shielded pair, Not less than size as recommended by system manufacturer.
- D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.13 GROUNDING

- A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.
- B. Comply with ANSI-J-STD-607-A.

2.14 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Wiring Method:
 - 1. Where backbone cabling is routed between structures or buildings install cables in raceways below ground. Provide cabling suitable for below ground installation.
 - 2. Where backbone cabling is routed underground install cables in raceways. Provide cabling suitable for below ground installation.
 - 3. Where backbone cabling is routed interior to a building or structure the following wiring method will be used:
 - a. Where located in areas other than control rooms install security cabling in conduit.
 - 4. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
 - 5. It shall be the responsibility of the Division 27 contractor to coordinate with the Division 26 contractor for sleeve and cabling installation.
- B. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
3.2 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
- B. Comply with requirements for backbone cabling installation specified in Division 27 Section "Communications Equipment Room Fittings."

3.3 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 48 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 - 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 10. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
 - 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - 12. Use only practices and tools recommended by the manufacturer to terminate all conductors at connecting blocks. Stuffer caps shall be used. However, stuffer caps shall not be used as a termination tool. Or other non-approved termination means shall not be used.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
- D. Optical Fiber Cable Installation:

- 1. Comply with TIA/EIA-568-B.3.
- 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- E. Outdoor Coaxial Cable Installation:
 - 1. Install outdoor connections in enclosures complying with NEMA 250, Type 3R. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 - 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches.
- F. Group connecting hardware for cables into separate logical fields.
- G. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 - 3. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 - 1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is not permitted.
 - 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 POWER AND CONTROL-CIRCUIT CONDUCTORS

- A. 120-V Power Wiring: Install according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables" unless otherwise indicated.
- B. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.6 CONNECTIONS

- A. Comply with requirements in Division 28 Section "Security Electronics" for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "Digital Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.7 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "Penetration Firestopping." Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.8 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

- B. Comply with ANSI-J-STD-607-A.
- C. Coordinate with Division 26 for ground bus bar installation. Division 26 contractor shall provide ground bar.

3.9 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 - 1. Administration Class: 3.
 - 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
- B. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion about TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 3 level of administration including optional identification requirements of this standard.
- C. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- D. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- E. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 - 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a buildingmounted device with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.

- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- F. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 - 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 28 0513

SECTION 281310 - ACCESS CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes a security access system consisting of a Central Station, one or more networked workstation computers, operating system and application software, and fieldinstalled Controllers connected by a high-speed electronic data transmission network. This system shall have the capability to provide the same functions as the existing system currently in operation within the County. Credentials, as well as card keys shall be interchangeable through both systems. The security access system shall have at a minimum the following:
 - 1. Access Control:
 - a. Regulating access through doors.
 - b. Anti-passback.
 - c. Visitor assignment.
 - d. Time and attendance.
 - e. Surge and tamper protection.
 - f. Credential cards and readers.
 - g. Capability with an Existing Enrollment center.
 - h. RS-232 ASCII interface.
 - i. Credential creation and credential holder database and management.
 - j. Monitoring of field-installed devices.
 - k. Reporting.
 - 2. Security:
 - a. Time and attendance.
 - b. Key tracking.
 - c. Interface with intrusion detection system, and fire alarm systems.
- B. Related Sections include the following:
 - 1. Division 28 Section "Intrusion Detection" for interface devices and communications protocol to integrate security functions of that Section into security access system.
 - 2. Division 28 Section "Digital, Addressable Fire-Alarm System" to interface unlock electrically locked doors.

1.3 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16-character set.
- B. CCTV: Closed-circuit television.
- C. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- D. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- E. CPU: Central processing unit.
- F. Credential: Data assigned to an entity and used to identify that entity.
- G. dpi: Dots per inch.
- H. File Server: A PC in a network that stores the programs and data files shared by users.
- I. GFI: Ground fault interrupter.
- J. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- K. I/O: Input/Output.
- L. LAN: Local area network.
- M. LED: Light-emitting diode.
- N. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- O. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- P. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- Q. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- R. RF: Radio frequency.
- S. ROM: Read-only memory. ROM data are maintained through losses of power.

ACCESS CONTROL

- T. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- U. RS-485: An TIA/EIA standard for multipoint communications.
- V. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- W. TWAIN: (Technology without an Interesting Name.) A programming interface that lets a graphics application, such as an image editing program or desktop publishing program, activate a scanner, frame grabber, or other image-capturing device.
- X. UPS: Uninterruptible power supply.
- Y. WAN: Wide area network.
- Z. WAV: The digital audio format used in Microsoft Windows.
- AA. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- BB. Windows: Operating system by Microsoft Corporation.
- CC. Workstation: A PC with software that is configured for specific limited security system functions.
- DD. WYSIWYG: (What You See Is What You Get.) Text and graphics appear on the screen the same as they will print.

1.4 SYSTEM DESCRIPTION

- A. System shall consist of a PC-based Central Station and field-installed Controllers, connected by a high-speed electronic data transmission network.
 - 1. System Software: Based on Microsoft Windows or Macintosh central-station, workstation operating system, server operating system, and application software. Software shall have the following capabilities:
 - a. Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - b. Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.
 - c. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.
 - d. System shall have open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with Microsoft Windows or Macintosh operating system.
 - e. Password-protected operator login and access.

- B. Network(s) connecting PCs and Controllers shall consist of one or more of the following:
 - 1. Local area, IEEE 802.3 Fast Ethernet 10 BASE-T, star topology network based on TCP/IP.
 - 2. Dial-up modem connection using a standard dial-up telephone line.

1.5 PERFORMANCE REQUIREMENTS

- A. Security access system shall use a single database for access-control and credential-creation functions.
- B. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- C. Number of Locations: Support at least 32,000 separate Locations using a single PC with combinations of direct-connect, dial-up, or TCP/IP LAN connections to each Location.
 - 1. Each Location shall have its own database and history in the Central Station. Location will be combined to share a common database (combined with existing database).
- D. Minimum Data Capacity:
 - 1. 16 different card-reader formats.
 - 2. 999 comments.
 - 3. 16 graphic file types for importing maps.
- E. Minimum Location Capacity:
 - 1. 4 with an expansion to 16 reader-controlled doors.
 - 2. 20,480 total access credentials.
 - 3. 32 with expansion to 128 supervised alarm inputs.
 - 4. 32 with expansion to 128 programmable outputs.
 - 5. 32,000 custom action messages per Location to instruct operator on action required when alarm is received.
- F. System Network Requirements:
 - 1. Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
 - 2. Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
 - 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.

- 4. Communications Controller may be used as an interface between the Central Station display systems and the field device network. Communications Controller shall provide functions required to attain the specified network communications performance.
- G. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.
- H. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.
- I. System Response to Alarms: Field device network shall provide a system end-to-end response time of 3 seconds or less for every device connected to the system. Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console.
- J. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- K. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect single- and double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multi-bit and burst error conditions. Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.
- L. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- M. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the security access system. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.

1.6 SUBMITTALS

- A. Product Data: For each type of product indicated. Include operating characteristics, furnished specialties, and accessories. Reference each product to a location on Drawings. Test and evaluation data presented in Product Data shall comply with SIA BIO-01.
- B. Shop Drawings:
 - 1. Diagrams for cable management system.
 - 2. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 3. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 4. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 5. Battery and charger calculations for Central Station, workstations, and Controllers.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For security system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data" include the following:
 - 1. Microsoft Windows or Macintosh software documentation.
 - 2. PC installation and operating documentation, manuals, and software for the PC and all installed peripherals. Software shall include system restore, emergency boot diskettes, and drivers for all installed hardware. Provide separately for each PC.
 - 3. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.
 - 4. System installation and setup guides, with data forms to plan and record options and setup decisions.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Source Limitations: Obtain Central Station, workstations, Controllers, Identifier readers, and all software through one source from a single manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- D. Comply with NFPA 70, "National Electrical Code."
- E. Comply with SIA DC-03 and SIA DC-07.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Central Station, Workstations, and Controllers:
 - 1. Store in temperature- and humidity-controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 50 and 85 deg F, and not more than 80 percent relative humidity, noncondensing.
 - 2. Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations that have been assigned to materials and equipment for recording in the system labeling schedules that are generated by cable and asset management system specified in Part 2.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.9 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Control Station: Rated for continuous operation in ambient conditions of 60 to 85 deg F and a relative humidity of 20 to 80 percent, noncondensing.
 - 2. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 36 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 1 enclosure.
 - 3. Interior, Uncontrolled Environment: System components installed in non-temperaturecontrolled interior environments shall be rated for continuous operation in ambient conditions of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 3R enclosures.
 - 4. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of minus 30 to plus 122 deg F dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 85 mph and snow cover up to 24 inches thick. NEMA 250, Type 3R enclosures.
 - 5. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
 - 6. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.

1.10 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Credential card blanks, ready for printing. Include enough credential cards for all personnel to be enrolled at the site plus an extra 50 percent for future use.
 - 2. Fuses of all kinds, power and electronic, equal to 10 percent of amount installed for each size used, but no fewer than three units.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SECURITY ACCESS SYSTEM

- A. Manufacturers:
 - 1. Stanley Security Solutions BASIS 2009

2.3 APPLICATION SOFTWARE

- A. System Software: Based on any Microsoft Windows or Macintosh central-station and workstation operating system and application software. Software shall have the following features:
 - 1. Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - 3. Capability for future additions within the indicated system size limits.
 - 4. Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator login and access.
- B. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors, operate displays, report alarms, generate reports, and help train system operators. Software shall have the following functions:
 - 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.

- 2. Operate and manage peripheral devices.
- 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
- 4. Import custom icons into graphics views to represent alarms and I/O devices.
- 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.
- 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.
- 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at a selected workstation and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- 10. Operator audit trail for recording and reporting all changes made to database and system software.
- C. Workstation Software:
 - 1. Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
 - 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.
- D. Controller Software:
 - 1. Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.
 - 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.
 - b. Controlling outputs.
 - c. Automatically reporting alarms to the Central Station.
 - d. Reporting of sensor and output status to Central Station on request.
 - e. Maintaining real time, automatically updated by the Central Station at least once a day.

- f. Communicating with the Central Station.
- g. Executing Controller resident programs.
- h. Diagnosing.
- i. Downloading and uploading data to and from the Central Station.
- 3. Controller Operations at a Location:
 - a. Location: Up to 64 Controllers connected to RS-485 communications loop. Globally operating I/O linking and anti-passback functions between Controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the Central Station or workstations are off line.
 - b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
 - c. Buffered events shall be handled in a first-in-first-out mode of operation.
- 4. Individual Controller Operation:
 - a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.
 - b. Card-reader ports of a Controller shall be custom configurable for at least 16 different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.
 - c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
 - d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
 - e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
 - f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.
 - g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
 - h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.

- 5. Communications Monitoring:
 - a. System shall monitor and report status of RS-485 communications loop of each Location.
 - b. Communication status window shall display which Controllers are currently communicating, a total count of missed polls since midnight, and which Controller last missed a poll.
 - c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM memory for each Controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The real-time clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.
- E. PC-to-Controller Communications:
 - 1. Central-station or workstation communications shall use the following:
 - a. TCP/IP LAN network interface cards.
 - b. Dial-up modems for connections to Locations.
 - 2. TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
 - 3. TCP/IP network interface card shall have an option to set the poll frequency and message response time-out settings.
 - 4. PC-to-Controller and Controller-to-Controller communications (dial-up or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- F. TCP/IP PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link.
 - 2. Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- G. Dial-up Modem PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link during dial-up modem connect times.
 - 2. Communication software shall be programmable to routinely poll each of the remote dialup modem Locations, collecting event logs and verifying phone lines at time intervals that are operator selectable for each Location.

- 3. System shall be programmable for dialing and connecting to all dial-up modem Locations and for retrieving the accrued history transactions on an automatic basis as often as once every 10 minutes and up to once every 9999 minutes.
- 4. Failure to communicate to a dial-up Location three times in a row shall result in an alarm at the PC.
- 5. Time offset capabilities shall be present so that Locations in a different geographical time zone than the host PC will be set to, and maintained at, the proper local time. This feature shall allow for geographical time zones that are ahead of or behind the host PC.
- 6. The Controller connected to a dial-up modem shall automatically buffer all normal transactions until its buffer reaches 80 percent of capacity. When the transaction buffer reaches 80 percent, the Controller shall automatically initiate a call to the Central Station and upload all transactions.
- 7. Alarms shall be reported immediately.
- 8. Dial-up modems shall be provided by manufacturer of the system. Modems used at the Controller shall be powered by the Controller. Power to the modem shall include battery backup if the Controller is so equipped.
- H. Controller-to-Controller Communications:
 - 1. Controller-to-Controller Communications: RS-485, 4-wire, point-to-point, regenerative (repeater) communications network methodology.
 - 2. RS-485 communications signal shall be regenerated at each Controller.
- I. Database Downloads:
 - 1. All data transmissions from PCs to a Location, and between Controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.
 - 2. If a Controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download shall restore data stored at the Controller to their normal working state and shall take place with no operator intervention.
 - 3. Software shall provide for setting downloads via dial-up connection to once per 24-hour period, with time selected by the operator.
- J. Operator Interface:
 - 1. Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
 - 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
 - 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
 - 4. Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
 - 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.

- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
 - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
 - b. Maps to provide real-time display animation and allow for control of points assigned to them.
 - c. System to allow inputs, outputs, and override groups to be placed on different maps.
 - d. Software to allow changing the order or priority in which maps will be displayed.
- 7. Override Groups Containing I/Os:
 - a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
 - b. Icon shall change automatically to show the live summary status of points in that group.
 - c. Override group icon shall provide a method to manually control or set to time zone points in the group.
 - d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.
- 8. Schedule Overrides of I/Os and Override Groups:
 - a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
 - b. Each schedule shall be composed of a minimum of two dates with separate times for each date.
 - c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
 - d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- 9. Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.
- K. Operator Access Control:
 - 1. Control operator access to system controls through three password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
 - 2. Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
 - 3. A minimum of 32 passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
 - 4. The password shall not be displayed or printed.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 5. Each password shall be definable and assignable for the following:
 - a. Commands usable.
 - b. Access to system software.
 - c. Access to application software.
 - d. Individual zones that are to be accessed.
 - e. Access to database.
- L. Operator Commands:
 - 1. Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or data-processing backgrounds. System prompts shall be a word, a phrase, or an acronym.
 - 2. Command inputs shall be acknowledged and processing shall start in not less than 1 second.
 - 3. Tasks that are executed by operator's commands shall include the following:
 - a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
 - b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
 - c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
 - d. System Test: Allows the operator to initiate a system-wide operational test.
 - e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
 - f. Print reports.
 - g. Change Operator: Used for changing operators.
 - h. Security Lighting Controls: Allows the operator to remotely turn on/off security lights (where interface is provided).
 - i. Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
 - j. Run system tests.
 - k. Generate and format reports.
 - 1. Request help with the system operation.
 - 1) Include in main menus.
 - 2) Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
 - 3) Provide navigation to specific topic from within the first help window.
 - 4) Help shall be accessible outside the applications program.
 - m. Entry-Control Commands:
 - 1) Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
 - 2) Arm or disarm each monitored input up to four times a day through timezone programming.

- 3) Enable or disable readers or keypads up to twice a day through time-zone programming.
- 4) Enable or disable cards or codes up to four times per day per entry point through access-level programming.
- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
 - a. Command entered is incorrect or incomplete.
 - b. Operator is restricted from using that command.
 - c. Command addresses a point that is disabled or out of service.
 - d. Command addresses a point that does not exist.
 - e. Command is outside the system's capacity.

M. Alarms:

- 1. System Setup:
 - a. Assign manual and automatic responses to incoming point status change or alarms.
 - b. Automatically respond to input with a link to other inputs, outputs, operatorresponse plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
 - c. 60-character message field for each alarm.
 - d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to sensor.
 - e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
 - f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
 - g. Store the most recent 1000 alarms for recall by the operator using the report generator.
- 2. Software Tamper:
 - a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
 - b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
 - c. Maintain a transcript file of the last 5000 commands entered at the each Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
 - d. Allow only acknowledgment of software tamper alarms.
- 3. Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.

- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.
- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. Alarm Automation Interface: High-level interface to Central Station alarm automation software systems. Allows input alarms to be passed to and handled by automation systems in same manner as burglar alarms, using an RS-232 ASCII interface.
- N. Alarm Monitoring: Monitor sensors, Controllers, etc. and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
 - 1. Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
 - 2. Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
 - 3. Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location.
 - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
 - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
 - b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
 - 5. Each workstation shall display the total pending alarms and total unresolved alarms.
 - 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
 - 7. Alarms shall transmit to Central Station in real time, except for allowing connection time for dial-up locations.
 - 8. Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
 - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
 - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
 - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.

- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken. Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.
- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- O. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.
 - 1. Color Code:
 - a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
 - b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
 - c. YELLOW: Advises operator that a zone is in access.
 - d. GREEN: Indicates that a zone is secure and that power is on.
 - 2. Graphics:
 - a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
 - b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
 - c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
 - d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
 - e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
- P. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
 - 1. Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- Q. Report Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be stored by type, date, and time. Report printing shall be the lowest priority activity. Report generation mode shall be operator selectable but set up

initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.

- 1. Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of period; and the default printer.
- 2. Printing on Requests: An operator may request a printout of any report.
- 3. Alarm Reports: Reporting shall be automatic as initially set up. Include alarms recorded by system over the selected time and information about the type of alarm (such as door alarm, intrusion alarm, tamper alarm, etc.), the type of sensor, the location, the time, and the action taken.
- 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
- 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
- 6. Automatic History Reports: Named, saved, and scheduled for automatic generation.
- 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.
- 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.
- 9. Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
- 10. Who Is In (Muster) Report:
 - a. Emergency Muster Report: One click operation on toolbar launches report.
 - b. Cardholder Report. Contain a count of persons that are "In" at a selected Location and a count with detailed listing of name, date, and time of last use, sorted by the last reader used or by the group assignment.
- 11. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that they are available on-site at all times.
- 12. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events or alarms only.
- 13. History Reports: Custom reports that allows the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
 - a. Initially store history on the hard disk of the host PC.
 - b. Permit viewing of the history on workstations or print history to any system printer.
 - c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
 - d. Each report shall depict the date, time, event type, event description, device, or I/O name, cardholder group assignment, and cardholder name or code number.
 - e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.

- f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
- 14. Reports shall have the following four options:
 - a. View on screen.
 - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to system.
 - c. "Save to File" with full path statement.
 - d. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 15. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
 - a. Active, inactive, or future activate or deactivate.
 - b. Code number, name, or imprinted card number.
 - c. Group, Location, access levels.
 - d. Start and stop code range.
 - e. Codes that have not been used since a selectable number of days.
 - f. In, out, or either status.
 - g. Codes with trace designation.
- 16. The reports of system database shall allow options so that every data field may be printed.
- 17. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.
- R. Anti-Passback:
 - 1. System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft anti-passback.
 - 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes though a reader of opposite designation.
 - 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
 - 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
 - 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
 - 6. The anti-passback schemes shall be definable for each individual door.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 7. The Master Access Level shall override anti-passback.
- 8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population anti-passback status to a neutral status.
- S. Visitor Assignment:
 - 1. Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
 - 2. Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
 - 3. Allow a visitor designation to be assigned to a credential holder.
 - 4. Security access system shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.
 - 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
 - 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
 - 7. System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.
- T. Time and Attendance:
 - 1. Time and attendance reporting shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
 - 2. Shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
 - 3. System software setup shall allow designation of selected access-control readers as time and attendance hardware to gather the clock-in and clock-out times of the users at these readers.
 - a. Reports shall show in and out times for each day, total in time for each day, and a total in time for period specified by the user.
 - b. Allow the operator to view and print the reports, or save the report to a file.
 - c. Alphabetically sort reports on the person's last name, by Location or location group. Include all credential holders or optionally select individual credential holders for the report.
- U. Training Software: Enables operators to practice system operation including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.
- V. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - 1. The enrollment station shall not have alarm response or acknowledgment functions.
 - 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.

- 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
- 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.
- 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
 - e. NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- 7. Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.
- 10. Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.
- 11. Card Expire Function: Allows readers to be configured to deactivate cards when a card is used at selected devices.

2.4 SYSTEM DATABASE

- A. Database and database management software shall define and modify each point in database using operator commands. Definition shall include parameters and constraints associated with each system device.
- B. Database Operations:
 - 1. System data management shall be in a hierarchical menu tree format, with navigation through expandable menu branches and manipulated with use of menus and icons in a main menu and system toolbar.
 - 2. Navigational Aids:
 - a. Toolbar icons for add, delete, copy, print, capture image, activate, deactivate, and muster report.

- b. Point and click feature to facilitate data manipulation.
- c. Next and previous command buttons visible when editing database fields to facilitate navigation from one record to the next.
- d. Copy command and copy tool in the toolbar to copy data from one record to create a new similar record.
- 3. All data entry shall be automatically checked for duplicate and illegal data and shall verify that data are in a valid format.
- 4. Provide a memo or note field for each item that is stored in database, allowing the storing of information about any defining characteristics of the item. Memo field is used for noting the purpose the item was entered for, reasons for changes that were made, and the like.
- C. File Management:
 - 1. Provide database backup and restoration system, allowing selection of storage media, including USB jump drive, and designated network resources.
 - 2. Provide manual and automatic mode of backup operations. The number of automatic sequential backups before the oldest backup becomes overwritten; FIFO mode shall be operator selectable.
 - 3. Backup program shall provide manual operation from any PC on the LAN and shall operate while system remains operational.
- D. Operator Passwords:
 - 1. Software shall support up to 256 individual system operators, each with a unique password.
 - 2. Operator Password: One to eight alphanumeric characters.
 - 3. Allow passwords to be case sensitive.
 - 4. Passwords shall not be displayed when entered.
 - 5. Provide each password with a unique and customizable password profile, and allow several operators to share a password profile. Include the following features in the password profile:
 - a. Allow for at least 256 operator password profiles.
 - b. Predetermine the highest-level password profile for access to all functions and areas of program.
 - c. Allow or disallow operator access to any program operation, including the functions of View, Add, Edit, and Delete.
 - d. Restrict which doors an operator can assign access to.
 - 6. Operators shall use a user name and password to log on to system.
 - a. This user name and password is used to access database areas and programs as determined by the associated profile.
 - 7. Make provision to allow the operator to log off without fully exiting program. User may be logged off but program will remain running while displaying the login window for the next operator.

- E. Access Card/Code Operation and Management: Access authorization shall be by card, by a manually entered code (PIN), or by a combination of both (card plus PIN).
 - 1. Access authorization shall verify the facility code first, the card or card-and-PIN validation second, and the access level (time of day, day of week, date), anti-passback status, and number of uses last.
 - 2. Use data-entry windows to view, edit, and issue access levels. Access authorization entry management system shall maintain and coordinate all access levels to prevent duplication or the incorrect creation of levels.
 - 3. Allow assignment of multiple cards/codes to a cardholder.
 - 4. Allow assignment of up to four access levels for each Location to a cardholder. Each access level may contain any combination of doors.
 - 5. Each door may be assigned four time zones.
 - 6. Access codes may be up to 11 digits in length.
 - 7. Software shall allow the grouping of locations so cardholder data can be shared by all locations in the group.
 - 8. Visitor Access: Issue a visitor badge, without assigning that person a card or code, for data tracking or photo ID purposes.
 - 9. Cardholder Tracing: Allow for selection of cardholder for tracing. Make a special audible and visual annunciation at control station when a selected card or code is used at a designated code reader. Annunciation shall include an automatic display of the cardholder image.
 - 10. Allow each cardholder to be given either an unlimited number of uses or a number from 1 to 9998 that regulates the number of times the card can be used before it is automatically deactivated.
 - 11. Provide for cards and codes to be activated and deactivated manually or automatically by date. Provide for multiple deactivate dates to be preprogrammed.
- F. Key control and tracking shall be an integrated function of cardholder data.
 - 1. Provide the ability to store information about which conventional metal keys are issued and to whom, along with key construction information.
 - 2. Reports shall be designed to list everyone that has possession of a specified key.
- G. Facility Codes: System shall accommodate up to 2048 facility codes per Location, with the option of allowing facility codes to work at all doors or only particular doors.
- H. Operator Comments:
 - 1. With the press of one appropriate button on toolbar, the user shall be permitted to make operator comments into history at anytime.
 - 2. Automatic prompting of operator comment shall occur before the resolution of each alarm.
 - 3. Operator comments shall be recorded by time, date, and operator number.
 - 4. Comments shall be sorted and viewed through reports and history.
 - 5. The operator may enter comments in two ways; either or both may be used:
 - a. Manually entered through keyboard data entry (typed), up to 65,000 characters per each alarm.
 - b. Predefined and stored in database for retrieval on request.

- 6. System shall have a minimum of 999 predefined operator comments with up to 30 characters per comment.
- I. Group:
 - 1. Group names may be used to sort cardholders into groups that allow the operator to determine the tenant, vendor, contractor, department, division, or any other designation of a group to which the person belongs.
 - 2. System software shall have the capacity to assign 1 of 32,000 group names to an access authorization.
 - 3. Make provision in software to deactivate and reactivate all access authorizations assigned to a particular group.
 - 4. Allow sorting of history reports and code list printouts by group name.
- J. Time Zones:
 - 1. Each zone consists of a start and stop time for 7 days of the week and three holiday schedules. A time zone is assigned to inputs, outputs, or access levels to determine when an input shall automatically arm or disarm, when an output automatically opens or secures, or when access authorization assigned to an access level will be denied or granted.
 - 2. Up to four time zones may be assigned to inputs and outputs to allow up to four arm or disarm periods per day or four lock or unlock periods per day; up to three holiday override schedules may be assigned to a time zone.
 - 3. Data-entry window shall display a dynamically linked bar graph showing active and inactive times for each day and holiday, as start and stop times are entered or edited.
 - 4. System shall have the capacity for [2048] <Insert number> time zones for each Location.
- K. Holidays:
 - 1. Three different holiday schedules may be assigned to a time zone. Holiday schedule consists of date in format MM/DD/YYYY and a description. When the holiday date matches the current date of the time zone, the holiday schedule replaces the time zone schedule for that 24-hour period.
 - 2. System shall have the capacity for 256 holidays.
 - 3. Three separate holiday schedules may be applied to a time zone.
 - 4. Holidays have an option to be designated as occurring on the designated date each year. These holidays remain in system and will not be purged.
 - 5. Holidays not designated to occur each year shall be automatically purged from database after the date expires.
- L. Access Levels:
 - 1. System shall allow for the creation up to 16 access levels.
 - 2. One level shall be predefined as the Master Access Level. The Master Access Level shall work at all doors at all times and override any anti-passback.
 - 3. System shall allow for access to be restricted to any area by reader and by time. Access levels shall determine when and where an Identifier is authorized.

- 4. System shall be able to create multiple door and time zone combinations under same access level so that an Identifier may be valid during different time periods at different readers even if the readers are on the same Controller.
- M. User-Defined Fields:
 - 1. System shall provide a minimum of 99 user-defined fields, each with up to 50 characters, for specific information about each credential holder.
 - 2. System shall accommodate a title for each field; field length shall be 20 characters.
 - 3. A "Required" option may be applied to each user-defined field that, when selected, forces the operator to enter data in the user-defined field before the credential can be saved.
 - 4. A "Unique" option may be applied to each user-defined field that, when selected, will not allow duplicate data from different credential holders to be entered.
 - 5. Data format option may be assigned to each user-defined field that will require the data to be entered with certain character types in specific spots in the field entry window.
 - 6. A user-defined field, if selected, will define the field as a deactivate date. The selection shall automatically cause the data to be formatted with the windows MM/DD/YYYY date format. The credential of the holder will be deactivated on that date.
 - 7. A search function shall allow any one user-defined field or combination of user-defined fields to be searched to find the appropriate cardholder. The search function shall include search for a character string.
 - 8. System shall have the ability to print cardholders based on and organized by the userdefined fields.
- N. Code Tracing:
 - 1. System shall perform code tracing selectable by cardholder and by reader.
 - 2. Any code may be designated as a "traced code" with no limit to how many codes can be traced.
 - 3. Any reader may be designated as a "trace reader" with no limit to which or how many readers can be used for code tracing.
 - 4. When a traced code is used at a trace reader, the access-granted message that usually appears on the monitor window of the Central Station shall be highlighted with a different color than regular messages. A short singular beep shall occur at the same time the highlighted message is displayed on the window.
 - 5. The traced cardholder image (if image exists) shall appear on workstations when used at a trace reader.

2.5 SURGE AND TAMPER PROTECTION

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.
 - 1. Minimum Protection for Power Connections 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits."
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Connections: Comply with requirements in Division 26 Section "Transient-Voltage

Suppression for Low-Voltage Electrical Power Circuits" as recommended by manufacturer for type of line being protected.

B. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station control-unit alarm display shall identify tamper alarms and indicate locations.

2.6 CENTRAL-STATION HARDWARE

A. Central-Station Computer: Furnished by the owner. Coordinate with owner or owner's representative for specific system requirements.

2.7 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - 1. The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network with dc line supervision on each of its alarm inputs.
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 5 percent or more for longer than 500 ms.
 - 2) Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
 - c. Outputs: Managed by Central Station software.
 - 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.

- E. Entry-Control Controller:
 - 1. Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - 1) On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - 2) Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
 - 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
 - 3. Outputs:
 - a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
 - b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion alarm annunciation from sensors stimulated by authorized entries.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
 - d. Door Prop Alarm: If a portal is held open for longer than 20 seconds, alarm sounds.
 - 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
 - 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.

- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Power Supply Capacity: 90 minutes of battery supply. Submit battery and charger calculations.
 - c. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 - 1) Trouble Alarm: Normal power off load assumed by battery.
 - 2) Trouble Alarm: Low battery.
 - 3) Alarm: Power off.

2.8 CARD READERS

- A. Coordinate with Owner for card reader type and function.
- B. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- C. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800 ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- D. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - 3. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- E. Display: LED or other type of visual indicator display shall provide visual status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- F. Touch Plate and Proximity Readers:
 - 1. Passive detection proximity card readers shall use a swept-frequency, RF field generator to read the resonant frequencies of tuned circuits laminated into compatible credential cards. The resonant frequencies read shall constitute a unique identification code number.

2. The card reader shall read proximity cards in a range from contact with to at least 6 inches from the reader.

2.9 DOOR AND GATE HARDWARE INTERFACE

- A. Exit Device with Alarm: Operation of the exit device shall generate an alarm. Exit device and alarm contacts are specified in Division 08 Section "Door Hardware."
- B. Exit Alarm: Operation of a monitored door shall generate an alarm. Exit devices and alarm contacts are specified in Division 08 Section "Door Hardware."
- C. Electric Door Strikes: Use end-of-line resistors to provide power line supervision. Signal switches shall transmit data to Controller to indicate when the bolt is not engaged and the strike mechanism is unlocked, and shall report a forced entry. Power and signal shall be from the Controller. Electric strikes are specified in Division 08 "Door Hardware."
- D. Electromagnetic Locks: End-of-line resistors shall provide power line supervision. Lock status sensing signal shall positively indicate door is secure. Power and signal shall be from the Controller. Electromagnetic locks are specified in Division 08 Section "Door Hardware."

2.10 RS-232 ASCII INTERFACE SPECIFICATIONS

- A. ASCII interface shall allow RS-232 connections to be made between the control station operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as CCTV switchers, intercoms, and paging systems.
 - 1. Each alarm input in system shall allow for individual programming to output up to four unique ASCII character strings through two different COM ports on the host PC.
 - 2. Each input shall have the ability to be defined to transmit a unique ASCII string for alarm and one for restore through one COM port, and a unique ASCII string for a nonalarm abnormal condition and one for a normal condition through the same or different COM port.
 - 3. The predefined ASCII character strings shall have the ability to be up to 420 characters long with full use of all the ASCII control characters, such as return or line feed. The character strings shall be defined in database of system and then assigned to the appropriate inputs.
 - 4. The COM ports of the host PC used to interface with external equipment shall be defined in the setup portion of the software. The COM port's baud rate, word length, stop bits, and parity shall be definable in the software to match that of the external equipment.
- B. Alarm System Interface:
 - 1. RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to central-station automation software.
 - 2. Alternatively, alarms that are received by this access control system are to be transferred to alarm automation system as if they were sent through a digital alarm receiver.

- a. System shall be able to transmit an individual message from any alarm input to a burglar alarm automation monitoring system.
- b. System shall be able to append to each message a predefined set of character strings as a prefix and suffix.

2.11 CABLES

A. Refer to Division 28 Section "Conductors and Cables for Electronic Safety and Security for cabling requirements. Provide additional cabling as required by the manufacturer's recommendations and installation instructions.

2.12 TRANSFORMERS

A. NFPA 70, Class II control transformers, NRTL listed. Transformers for security access-control system shall not be shared with any other system.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."

3.3 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Install cables without damaging conductors, shield, or jacket.
- D. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- E. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.4 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet.
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet.
- E. Card Readers and Keypads:
 - 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet, and install No. 20 AWG wire if maximum distance is 500 feet.
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet.
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet.

3.5 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

- D. Bond shields and drain conductors to ground at only one point in each circuit.
- E. Signal Ground:
 - 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.6 INSTALLATION

A. Install card readers.

3.7 IDENTIFICATION

- A. In addition to requirements in this Article, comply with applicable requirements in Division 26 Section "Identification for Electrical Systems" and with TIA/EIA-606.
- B. Using cable and asset management software specified in Part 2, develop Cable Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable, and label cable and jacks, connectors, and terminals to which it connects with same designation. Use logical and systematic designations for facility's architectural arrangement.
- C. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - 1. All wiring conductors connected to terminal strips shall be individually numbered, and each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with the name and number of the particular device as shown.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at the device if the color of the wire is consistent with the associated wire connected and numbered within the panel or cabinet.
- D. At completion, cable and asset management software shall reflect as-built conditions.

3.8 SYSTEM SOFTWARE

A. Develop, install, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.9 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

- 1. Test per requirements outlined in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- B. Remove and replace malfunctioning devices and circuits and retest as specified above.

3.10 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.11 DEMONSTRATION

 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain security access system. Refer to Division 01 Section "Demonstration and Training"

END OF SECTION 281300

SECTION 281600 - INTRUSION DETECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. The Contractor shall provide, install, and program a functionally, integrated Digital Alarm Communicator and Access Control System (DACS) per the Manufacturer's guidelines, codes, and requirements within these specifications.
 - 2. The intrusion detection system shall be multiplexed, modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions. This shall be an extension of the existing system.
 - 3. Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "Door Hardware."
 - b. Division 28 Section "Access Control."
 - c. Division 28 Section "Fire Detection and Alarm."
- B. Related Sections include the following:
 - 1. Division 28 Section "Conductors And Cables For Electronic Safety And Security" for cabling between central-station control units and field-mounted devices and controllers.

1.3 DEFINITIONS

- A. LCD: Liquid-crystal display.
- B. LED: Light-emitting diode.
- C. PIR: Passive infrared.
- D. RFI: Radio-frequency interference.
- E. UPS: Uninterruptible power supply.
- F. DACS: Digital Alarm Communicator and Access Control System

- G. Protected or Protection Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- H. Standard Intruder: A person who weighs 100 lb or less and whose height is 60 inches or less; dressed in a long-sleeved shirt, slacks, and shoes.
- I. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.

1.4 SUBMITTALS

- A. Product Data: Components for sensing, detecting, systems integration, and control, including dimensions and data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: Detail assemblies of standard components that are custom assembled for specific application on this Project.
 - 1. Functional Block Diagram: Show single-line interconnections between components including interconnections between components specified in this Section and those furnished under other Sections. Indicate methods used to achieve systems integration. Indicate control, signal, and data communication paths and identify programmable logic controllers networks and control interface devices and media to be used. Describe characteristics of network and other data communication lines.
 - 2. Raceway Riser Diagrams: Detail raceway runs required for intrusion detection and for systems integration. Include designation of devices connected by raceway, raceway type, and size, and type and size of wire and cable fill for each raceway run.
 - 3. UPS: Sizing calculations.
 - 4. Device Address List
 - 5. System Wiring Diagrams: Include system diagrams unique to Project. Show connections for all devices, components, and auxiliary equipment. Include diagrams for equipment and for system with all terminals and interconnections identified.
 - 6. Details of surge-protection devices and their installation.
 - 7. Sensor detection patterns and adjustment ranges.
- C. Equipment and System Operation Description: Include method of operation and supervision of each component and each type of circuit. Show sequence of operations for manually and automatically initiated system or equipment inputs. Description must cover this specific Project; manufacturer's standard descriptions for generic systems are not acceptable.
- D. Qualification Data: For Installer.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For intrusion detection system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- 1. Data for each type of product, including features and operating sequences, both automatic and manual.
- 2. Central-station control-unit hardware and software data.
- G. Warranty: Special warranty specified in this Section.
- H. Other Information Submittals:
 - 1. Test Plan and Schedule: Test plan defining all tests required to ensure that system meets technical, operational, and performance specifications within 60 days of date of Contract award.
 - 2. Examination reports documenting inspections of substrates, areas, and conditions.
 - 3. Anchor inspection reports documenting inspections of built-in and cast-in anchors.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. An employer of workers, at least one of whom is a technician certified by the National Burglar & Fire Alarm Association.
 - 2. Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Intrusion Detection Systems Integrator Qualifications: An experienced intrusion detection equipment supplier and Installer who has completed systems integration work for installations similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- C. Testing Agency Qualifications: Where the Owner's insurance underwriter requires that an independent testing agency, with the experience and capability to conduct the testing indicated, that is a member company of the National Burglar & Fire Alarm Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to Owner's insurance underwriter, provide the following (Coordinate with owner/owner's representative for this requirement):
 - 1. Testing Agency's Field Supervisor: Person currently certified as an advanced alarm technician by the National Burglar & Fire Alarm Association to supervise on-site testing specified in Part 3.
- D. Product Options: Drawings indicate size, profiles, and dimensional requirements of detection devices and central-station control units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- F. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Environmental Conditions: Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Altitude: Sea level to 4000 feet.
 - 2. Interior, Controlled Environment: System components, except central-station control unit, installed in interior environments shall be rated for continuous operation in ambients of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, non-condensing.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambients of minus 30 to plus 122 deg F dry bulb and 20 to 90 percent relative humidity, condensing. Comply with UL 294 and UL 639 for outdoor-use equipment. Rate for continuous operation when exposed to rain as specified in NEMA 250, winds up to 85 mph.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer and Installer agree to repair or replace components of intrusion detection devices and equipment that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Intrusion Detection Devices: Furnish quantity equal to five percent of the number of units of each type installed, but no fewer than one of each type.
 - 2. Fuses: Three of each kind and size.
 - 3. Tool Kit: Provide six sets of tools for use with security fasteners, each packaged in a compartmented kit configured for easy handling and storage.
 - 4. Security Fasteners: Furnish no fewer than 1 box for every 50 boxes or fraction thereof, of each type and size of security fastener installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Provide products by the following unless:
 - 1. As provided under a separate contract for the Public Works Building. It is anticipated that this system shall be an extension of the Public Works Building System.
- B. All equipment shall be provided by one manufacturer unless specifically noted.

2.2 FUNCTIONAL DESCRIPTION OF SYSTEM

A. Match functionality of system provided at the Public Works Building.

2.3 SYSTEM FEATURE/CAPABILITY SUMMARY

A. Match features/capability of system provided at the Public Works Building.

2.4 SYSTEM INTERFACE REQUIREMENTS

- A. Grounding: The Contractor shall properly earth ground the DACS to prevent electrostatic charges and other transient electrical surges from damaging the DACS panel.
- B. Primary power: Division 26 contractor shall provide a dedicated 120 VAC power circuit to the DACS system. The 120 VAC is stepped down to 16.5 VAC to power the DACS panel using a class two, plug-in transformer. This power circuit shall be properly rated to continuously power all points and functions indefinitely in full alarm condition.
- C. Primary power supervision: When the primary power source fails, the system can be configured to report an "AC Fail" message to a commercial central station. The transmission delay of this message is programmable from 5 seconds to 86 minutes with an optional 6 to 12 hour transmission delay. The message can also be programmed to "tag-along" with another message transmitted to the central station. The system will always display a loss of primary power on the ACC and may be configured to provide additional audible warning.
- D. Secondary power (standby battery): The Contractor shall provide adequate battery power as defined by the relevant application criteria, appropriate battery chargers shall be provided consistent with the battery back-up capacity. The most current accepted version of NFPA 72 and any applicable local codes or AHJ requirements must be met accordingly.
- E. Secondary power supervision: When the secondary power source experiences a 85% depletion of its standby capacity, the system can be configured to report a "Low Battery" message to a commercial central station. The system will always display a low battery condition on the ACC and may be configured to provide additional audible warning.
- F. Wiring: The contractor shall provide cables consistent with the manufacturer's recommendations. The following general guidelines shall be followed for wiring installation:
 - 1. Wiring shall be appropriately color-coded with permanent wire markers. Copper conductors shall be used.
 - 2. All signal cables provided under this contract shall be Class II, plenum-rated cable where required. Where subject to mechanical damage, wiring shall be enclosed in metal conduits or surface metallic raceway.
 - 3. Data wires shall not be enclosed in conduit or raceways containing AC power wires.
 - 4. Where EMI may interfere with the proper operation of the DACS circuits, twisted/shielded cable shall be used.
- G. The system shall be protected from EMI and lightning surges.

- H. Auxiliary function control interfaces: Auxiliary functions such as activating bells, strobes, or lights shall be accomplished using the optional relay modules. These auxiliary interfaces shall be electrically isolated to avoid inter-system interferences or damages.
- I. Functional criteria programmed into system memory shall be backed up by battery power. Additionally, the number of system programmers shall be severely restricted via the use of program locking features and passwords.

2.5 ENCLOSURES

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics (Other than DACS Enclosure):
 - 1. Lockable with cylinder lock and key,
 - 2. NEMA 250, Type 12
 - 3. Provide with removable terminal blocks.
 - 4. Power Transformer.
- C. Exterior Electronics:
 - 1. Lockable with cylinder lock and key,
 - 2. NEMA 250, Type 4X, stainless steel.
 - 3. Provide with removable terminal blocks and single screw mounting bracket.
 - 4. Faceplate shield and metal covering rear of circuit assembly.
 - 5. Power Transformer.
 - 6. Tamper-proof pressure switch.
 - 7. Manuals.
 - 8. Final Address List.

2.6 DOOR, SWITCHES

- A. Surface mounted: Provide a GE 2500 Series door switch.
- B. Flush mounted: Provide a Radionics 1078W door switch.
- C. All surface mounted switches shall be mounted (provide manufacturer's mounting bracket) at the top of the door between two and four inches from the side opposite the hinge edge of the door.
- D. Provide manufacturer's steel armored whip to tamper proof steel junction box with pressure switch.

2.7 AUDIBLE ALARM DEVICES

- A. Siren: 30-W speaker with siren driver, rated to produce a minimum sound output of 103 dB at 10 feet from central-station control unit.
 - 1. Enclosure: Weather-resistant steel box with tamper switches on cover and on back of box.

2.8 ACCESSORIES

- A. All model numbers are typical of Radionics equipment. Typical or equal functions from other manufacturers are acceptable provided they provide the same functionality and quality.
- B. System Accessories:

1.	D136	Plug-in relay, 2 amps @ 30 VDC. This relay is required for various func- tions such as ground start telephone system application and auxiliary power reset
2.	D56W	Alarm Command Center surface conduit backbox
3.	D8103	Universal enclosure
4.	D8125	Point of Protection EXpander module. Each POPEX (up to two per system) shall monitor up to 119 Popit devices
5.	D8128D	Octo-POPIT module – combines POPEX and POPIT functions and pro- vides 8 points to each DACS. A total of 30 OctoPOPITS per DACS
6.	D8129	Octo-relay module - 8 programmable dry contact relay outputs, "Form C." Uses information on DACT serial data output to selectively activate the relay outputs
7.	D9002-5	Accessory Module Mounting Skirt
8.	D9127T	POPIT module - tampered, UL-listed for fire (For fire alarm comm. only)
9.	D9127U	POPIT module - untampered UL-listed for fire
10.	DX4020	Network Interface Module – provides connection to local or wide area networks to communicate system events to D6600 NetCom Receiver.

C. Power Supply:

- 1. D122 Dual battery harness
- 2. D126 Sealed lead-acid battery, 7 Ah (Minimum two per power supply)
- 3. D1640 Transformer, 16.5 VAC, 40 VA
- 4. D8004 UL transformer enclosure

D. Communication Accessories:

- 1. D161 8 ft. (2.4 m) phone cord
- 2. D162 2 ft. (61 cm) phone cord
- 3. D166 RJ-31X Phone Jack

- E. Annunciation Devices:
 - 1. D1255W Alarm Command Center (ACC) Built-in multi-tone sounder. Displays status in custom English text on 16-character display. If more than 4 ACCs are required, add D8132 battery charger unit. ACCs provide "command menu" user interface. ACC can be supervised.
- F. Other accessories as required for a complete installation.

2.9 SECURITY FASTENERS

- A. Operable only by tools produced for use on specific type of fastener by fastener manufacturer or other licensed fabricator. Drive system type, head style, material, and protective coating as required for assembly, installation, and strength.
- B. Manufacturers:
 - 1. Camcar Textron Inc.
 - 2. Holo-Krome; a Danaher Corporation.
 - 3. Safety Socket Screw Corporation.
 - 4. Tamper-Pruf Screws, Inc.
- C. Drive System Types: Pinned Torx-Plus.
- D. Socket Flat Countersunk Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835.
- E. Socket Button Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835.
- F. Socket Head Cap Fasteners:
 - 1. Heat-treated alloy steel, ASTM A 574.
- G. Protective Coatings for Heat-Treated Alloy Steel:
 - 1. Zinc chromate, ASTM F 1135, Grade 3 or 4; for exterior applications and interior applications where indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of intrusion detection.

- 1. Examine roughing-in for embedded and built-in anchors to verify actual locations of intrusion detection connections before intrusion detection installation.
- 2. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of intrusion detection.
- B. Inspect built-in and cast-in anchor installations, before installing intrusion detection, to verify that anchor installations comply with requirements. Prepare inspection reports.
 - 1. Remove and replace anchors where inspections indicate that they do not comply with requirements. Re-inspect after repairs or replacements are made.
 - 2. Perform additional inspections to determine compliance of replaced or additional anchor installations. Prepare inspection reports.
- C. For material whose orientation is critical for its performance as a ballistic barrier, verify installation orientation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WIRING INSTALLATION

- A. Wiring Method: Refer to Divions 28 Section "Conductors and Cables for Electronic Safety and Security."
- B. Door Switch Armored Cable Whips: Secure armored cable whips 3" from door switch and junction box, and at intervals not exceeding 18".
- C. Wires and Cables:
 - 1. Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
 - 2. 120-V Power Wiring: Provided by Division 26 contractor.
 - 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable, according to Division 28 Section "Conductors and Cables for Electronic Safety and Security."
 - 4. Computer and Data-Processing Cables: Install according to Division 28 Section "Conductors and Cables for Electronic Safety and Security."

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. All wiring shall be home run from each device to the building area junction box or main control panel without splice, except for connections at POPIT zones. Splicing of cables shall only be permitted at the above locations and at security devices. <u>ALL SPLICES AT DOOR</u> <u>CONTACTS SHALL BE TINNED AND SOLDERED BEFORE BEING INSULATED BY</u> <u>MEANS OF CRIMPS OR HEAT SHRINK TUBING.</u>
- B. Each zone on a POPIT system shall have an independent data circuit. No multiple zones on a single data circuit.

- C. Termination of individual doors, motion detectors and other areas where POPTs are used. The POPITs shall be mounted inside a 4-11/16" x 2-1/2" steel junction box with tamper proof pressure switch. The junction box shall be securely fastened to the building. POPITs mounted inside junction boxes shall be fastened to the junction box cover with a minimum 8" slack of the wiring to allow for serviceability.
- D. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
- E. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems."

3.4 GROUNDING

- A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Install grounding electrodes of type, size, location, and quantity indicated. Comply with installation requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Pretesting: After installation, align, adjust, and balance system and perform complete pretesting to determine compliance of system with requirements in the Contract Documents. Correct deficiencies observed in pretesting. Replace malfunctioning or damaged items with new ones and retest until satisfactory performance and conditions are achieved. Prepare forms for systematic recording of acceptance test results.
 - 1. Report of Pretesting: After pretesting is complete, provide a letter certifying that installation is complete and fully operable; include names and titles of witnesses to preliminary tests.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- C. Perform the following field tests and inspections and prepare reports:
 - 1. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified.
 - 2. Operational Tests: Schedule tests after pretesting has been successfully completed. Test all modes of system operation and intrusion detection at each detection device. Test for detection of intrusion and for false alarms in each protected zone. Test for false alarms by simulating activities outside indicated detection patterns.

- 3. Electrical Tests: Comply with NFPA 72, Section A-7. Minimum required tests are as follows:
 - a. Verify the absence of unwanted voltages between circuit conductors and ground.
 - b. Test all conductors for short circuits using an insulation-testing device.
 - c. With each circuit pair, short circuit at the far end of circuit and measure circuit resistance with an ohmmeter. Record circuit resistance of each circuit on Record Drawings.
 - d. Verify that each controller is in normal condition as detailed in manufacturer's operation and maintenance manual.
 - e. Test signal and data transmission circuits complying with requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security" for proper signal transmission under open-circuit conditions. One connection each should be opened at not less than 10 percent of initiating and indicating devices. Observe proper signal transmission according to class of wiring used.
 - f. Verify that transient surge-protection devices are installed according to manufacturer's written instructions.
 - g. Test each initiating and indicating device for alarm operation and proper response at central-station control unit.
 - h. Test both primary and secondary power. Verify, by test, that UPS is capable of operating the system for period and in manner specified.
- D. Report of Tests and Inspections: Prepare a written record of tests, inspections, and detailed test results in the form of a test log.
- E. Tag all equipment, stations, and other components for which tests have been satisfactorily completed.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain intrusion detection. Refer to Division 01 Section "Demonstration and Training."

3.7 FINAL PROGRAMMING OF CODES

A. All pass codes shall be given to the owner, and shall be programmed at the conclusion of the construction phase. Pass codes shall not be retained by the contractor, or contractor's employees for any reason unless specifically directed by the contractor.

3.8 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose. Visits for this purpose shall be in addition to any required by warranty.

END OF SECTION 281600

SECTION 28 3111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-alarm control unit.
 - 2. Notification appliances.
 - 3. Remote annunciator.
 - 4. Addressable interface device.

1.3 DEFINITIONS

- A. LED: Light-emitting diode.
- B. NICET: National Institute for Certification in Engineering Technologies.

1.4 SYSTEM DESCRIPTION

- A. Noncoded, UL-certified, microprocessor based, addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.
- B. Class A Wiring: System connections for alarm initiation and alarm indicating circuits.
- C. Audible Alarm: By sounding of horns.
- D. Visual Alarm: By operation of strobe devices.
- E. Functional Description: Provide a complete fire alarm and detection system with the following functions and operating features:
 - 1. Priority of Signals: Automatic response functions shall be accomplished by the first zone initiated. Alarm functions resulting from initiation by the first zone shall not be altered by subsequent alarms. An alarm signal shall be the highest priority. Supervisory or trouble signals shall have second- and third-level priority. Signals of a higher level priority shall take precedence over signals of lower priority even though the lower priority condition occurred first. Annunciate all alarm signals regardless of priority or order received.

- 2. Noninterfering: Provide zoned, powered, wired, and supervised system so a signal on one zone does not prevent the receipt of signals from any other zone. All zones shall be manually resettable from the FCU after the initiating device or devices have been restored to normal. Systems that require the use of batteries or battery backup for the programming function are not acceptable.
- 3. Signal Initiation: The manual or automatic operation of an alarm initiating or supervisory operating device shall cause the FCU to transmit an appropriate signal including, but not limited to:
 - a. General alarm.
 - b. Valve tamper supervisory.
 - c. Door release.
 - d. System trouble.
- 4. Independent System Monitoring: Supervise each independent smoke detection system, duct detector, and elevator smoke detection system for both normal operation and trouble.
- 5. Circuit Supervision: Indicate circuit faults with both a zone and a trouble signal at the FCU. Provides a distinctive indicating audible tone and (LED) indicator lights.
- 6. Transmission to Remote Central Station: System shall include provisions for Alarm signals to be automatically routed in a listed and approved manner to a remote station service transmitter using listed and approved equipment. (Provide 3/4" C to main TMB)
- 7. Silencing at FCU: Switches shall provide capability for acknowledgment of alarm; supervisory, trouble, and other specified signals at the FCU; and capability to silence the local audible signal and light an LED (light emitting diode). Subsequent zone alarms shall cause the audible signal to sound again until silenced in turn by switch operation. Restoration to normal of alarm, supervisory, and trouble conditions shall extinguish the associated LED and cause the audible signal to sound again until the restoration is acknowledged by switch operation.
- 8. Power Loss Indication: Sound trouble signal at the FCU upon loss of primary power at the FCU and the annunciator. Illuminate the emergency power light at both locations when the system is operating on an alternate power supply.
- 9. Annunciation: Annunciate manual or automatic operation of any alarm or supervisory initiating device both on the FCU and on the annunciator(s) indicating the location and type device.
- 10. FCU Display: An alarm shall be displayed on an 80 character LCD display. The system alarm red LED shall flash on the control panel and remote annunciator. Once acknowledged, this same LED shall latch on.
- 11. A subsequent different alarm received shall flash the system alarm LED on the control panel and remote annunciator. The LCD display shall show the new alarm information. The system shall have an alarm list key that will allow the operator to scroll and display all alarms, troubles and supervisory conditions with the time of occurrence.
- 12. General Alarm: A system general alarm includes:
 - a. Indicating the general alarm condition at the FCU and the system annunciator.
 - b. Identifying the device that is the source of the alarm at the FCU and the system annunciator.
 - c. Initiating audible and visible alarm signals throughout the building.
 - d. Release of fire and smoke doors normally held open by magnetic door holders.
 - e. Stopping supply and return fans by addressable interface device or where alarm is initiated.
 - f. Closing fire/smoke dampers serving zone(s) where alarm is initiated.
 - g. Unlocking designated doors.

GILA COUNTY FACILITIES AND SIGN SHOP BUILDING GLOBE, ARIZONA

- h. Recording of the event.
- i. Initiating transmission of alarm signal to an approved remote central station.
- 13. Sprinkler water flow alarm switch operation:
 - a. Initiates a general alarm.
 - b. Causes the indicator lamp to flash indicating the device location that has operated.
- 14. Sprinkler valve tamper switch operation:
 - a. Causes a supervisory audible and visible "valve tamper" signal indication at FCU and at any remote annunciator(s).
 - b. Causes the LED indicator lamp to flash indicating the device location that has operated.
 - c. Differentiation between valve tamper activation and open or ground fault.
 - d. Causes a printed record of the event on the system printer.
- 15. Remote Detector Sensitivity Adjustment: Manipulation of controls at the FCU causes the selection of specific addressable smoke detectors for adjustment, displays of their current status and sensitivity settings, and controls changes in those settings. Provide ability of using the same controls to program repetitive scheduled changes in sensitivity of specific detectors. Sensitivity adjustments and schedule changes shall be printed on the system printer.
- F. Recording of Events: Record all alarm, supervisory, and trouble events by means of system printer. Printout shall be by zone, device, and function. When the FCU receives a signal, the alarm, supervisory, and trouble condition shall be printed. The printout shall include the type of signal (alarm, supervisory, or trouble), the device, zone number, date, and the time of the occurrence. The printer shall differentiate the alarm signals from al other printed indications. When the system is reset, this event shall also be printed including the same information concerning device, location, date, and time. Provide a means to command the printout of a list of existing alarm, supervisory, and trouble conditions in the system.
- G. Prior to the start of construction and throughout the entire construction period, the fire alarm equipment manufacturer's representative shall be locally and physically available and responsible to coordinate with the electrical contractor as necessary for questionable items of size or to locate installation of system components required on this project.

1.5 SUBMITTALS

- A. General Submittal Requirements:1. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified fire-alarm technician, Level III minimum.
- B. System Operation Description: Detailed description for this Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.
- C. Product Data: For each type of product indicated.

- D. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Comply with recommendations in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72.
 - 2. Include voltage drop calculations for notification appliance circuits.
 - 3. Include battery-size calculations.
 - 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 5. Locate detectors according to manufacturer's written recommendations.
 - 6. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
 - 7. System riser diagram with device addresses, conduit sizes, and cable and wire types and sizes.
 - 8. Wiring Diagrams: Power, signal, and control wiring. Include diagrams for equipment and for system with all terminals and interconnections identified. Show wiring color code.
 - 9. Provide Electronic As-builts for owner's use. Provide shop drawings in Autocad 2004 or high
- E. Qualification Data: For qualified Installer.
- F. Submittals to Authorities Hafing Jurisdiction (AHJ): In addition to distribution requirements for submittals specified in Division 01 Section "Shop Drawings, Product Data and Samples," the system supplier shall be responsible for submitting drawings to the AHJ for approval. The Engineer shall review the shop drawings prior to submitting to the AHJ. Upon receipt of any review comments or correspondence from the reviewers and authorities, submit copies of the same to the Architect/Engineer. To facilitate review, include copies of annotated Contract Drawings as needed to depict component locations. Resubmit if required to make clarifications or revisions to obtain approval. Final shop drawings approved by the AHJ shall be re-submitted to the Architect/Engineer for final review.
- G. Field quality-control reports.
- H. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
 - 2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
 - 3. Record copy of site-specific software.
 - 4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 - a. Frequency of testing of installed components.
 - b. Frequency of inspection of installed components.
 - c. Requirements and recommendations related to results of maintenance.

- d. Manufacturer's user training manuals.
- 5. Manufacturer's required maintenance related to system warranty requirements.
- 6. Abbreviated operating instructions for mounting at fire-alarm control unit.
- 7. Copy of NFPA 25.
- I. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On compact disk, complete with data files.
 - 3. Device address list (Coordinated with final system programming).
 - 4. Printout of software application and graphic screens.
 - 5. Instructions for gaining access to the fire alarm system programming. User Access Levels and passwords as specified later in this section. Training for altering these passwords and access levels shall be scheduled with the owner at his convenience, and shall be performed prior to the Certification of Occupancy (temporary or permanent whichever is first) is issued for the project.
- J. At the completion of the installation, the fire alarm contractor shall electronically revise the approved AHJ shop drawings to reflect the actual as-built condition. Provide two (2) new hard copies of these drawings on paper media that matches the size and scale of the Architect/Engineer's drawings. Actual loop routes and pullbox locations shall be clearly indicated on these drawings. Where a fire command center is present within the new or existing facility, two (2) additional copies of these revised as-builts shall be provided.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.
- B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. All devices and equipment shall be manufactured by one (1) fire alarm manufacturer and ULlisted as a single fire alarm system. All devices and equipment shall bear the UL label.
- E. Proprietary fire alarm systems that are serviceable by a single company shall not be provided.
- F. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 - 1. Notify Construction Manager or Owner no fewer than two working days in advance of proposed interruption of fire-alarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

1.8 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.9 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
 - 3. Keys and Tools: One extra set for access to locked and tamperproofed components.
 - 4. Audible and Visual Notification Appliances: Quantity equal to 5 percent of amount of each type installed but not less than 1 unit.
 - 5. Fuses: Two of each type installed in the system.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Edwards Systems Technology; EST-3 Series.
 - 2. NOTIFIER; a Honeywell company; NFS-2-3030 Series.
 - 3. As prior approved per the general conditions and special instructions.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Verified automatic alarm operation of smoke detectors.
 - 2. Automatic sprinkler system water flow.
 - 3. Fan shutdown via relay.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm at fire-alarm control unit and remote annunciators.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Unlock electric door locks in designated egress paths.
 - 5. Release fire and smoke doors held open by magnetic door holders.
 - 6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 - 7. Record events in the system memory.
 - 8. Send signal to PLC for security system use. Coordinate with security contractor for connection type.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. Low-air-pressure switch of a dry-pipe sprinkler system.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of primary power at fire-alarm control unit.
 - 4. Ground or a single break in fire-alarm control unit internal circuits.
 - 5. Abnormal ac voltage at fire-alarm control unit.
 - 6. Break in standby battery circuitry.
 - 7. Failure of battery charging.
 - 8. Abnormal position of any switch at fire-alarm control unit or annunciator.
 - 9. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system.
- E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators. Record the event on system printer.

2.3 FIRE-ALARM CONTROL UNIT

- A. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.

- a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
- b. Include a real-time clock for time annotation of events on the event recorder and printer.
- 2. Addressable initiation devices that communicate device identity and status.
 - a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 - b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.
- 3. Addressable control circuits for operation of:
 - a. Mechanical equipment shut-down.
 - b. PLC security system.
- B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 2 line(s) of 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.
- C. Circuits:
 - 1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class A.
 - a. Initiating Device Circuits: Style D.
 - b. Notification Appliance Circuits: Style Z.
 - c. Signaling Line Circuits: Style 6.
 - d. Install no more than 50 addressable devices on each signaling line circuit.
 - 2. Serial Interfaces: Two RS-232 ports for printers.
- D. Smoke-Alarm Verification:
 - 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
 - 2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
 - 3. Record events by the system printer.
 - 4. Sound general alarm if the alarm is verified.
 - 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

- E. Notification Appliance Circuit: Operation shall sound in the pattern currently being used for the existing system.
- F. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke barrier walls shall be connected to fire-alarm system.
- G. PLC: Communicate with PLC to indicate alarm condition.
- H. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.
- I. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- J. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals, and supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the powersupply module rating.
 - 2. Power supply shall have a dedicated branch circuit and circuit breaker which shall be ULlisted and "red" in color.
- K. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
 - 1. Batteries: Sealed lead calcium.
- L. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.
- M. Fire Alarm Control Unit shall be cable of communicating via a BACnet gateway.
- N. Fire Control Unit Access: Provide multiple user levels (minimum of two) for access to the Fire Control Unit operation. These user levels shall be provided with passwords which can be changed only by the user with the highest level of access. Each level of access shall be given rights to alter or control the same functions as all lower levels. The owner shall be provided with all levels of access following the completion of the project. Refer to the submittal portion of this specification for additional requirements.

2.4 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
- B. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.
- C. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.
- D. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.
- E. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 - Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 - 2. Mounting: Wall mounted unless otherwise indicated.
 - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 - 4. Flashing shall be in a temporal pattern, synchronized with other units that can be seen from any angle. Synchronization with existing strobes whether they are connected to a compatible system or not. Provide synchronization modules where appropriate.
 - 5. Strobe Leads: Factory connected to screw terminals.
 - 6. Mounting Faceplate: Factory finished, red.
 - 7. Vandal resistant cover.
- F. Voice/Tone Notification Appliances:
 - 1. Appliances shall comply with UL 1480 and shall be listed and labeled by an NRTL.
 - 2. High-Range Units: Rated 2 to 15 W.
 - 3. Low-Range Units: Rated 1 to 2 W.
 - 4. Mounting: Flush, semirecessed, or surface mounted and bidirectional as indicated.
 - 5. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.5 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.6 ADDRESSABLE INTERFACE DEVICE

- A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- B. Integral Relay: Capable of providing a direct signal to circuit-breaker shunt trip for power shutdown. Refer to one-line diagram for additional information.

2.7 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from firealarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.
 - 3. LED display.
 - 4. Manual test report function and manual transmission clear indication.
 - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Loss of ac supply or loss of power.
 - 3. Low battery.

- 4. Abnormal test signal.
- 5. Communication bus failure.
- E. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.8 DEVICE GUARDS

- A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection. Unpainted UL Listed lexan cover for notification appliances.
 - 1. Factory fabricated and furnished by manufacturer of device.
 - 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72 for installation of fire-alarm equipment.
- B. Equipment Mounting:
 - 1. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
- C. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Connect new equipment to existing control panel in existing part of the building.
 - 2. Connect new equipment to existing monitoring equipment at the supervising station.
 - 3. Expand, modify, and supplement existing control and monitoring equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
- D. Remote Status and Alarm Indicators with Test Switch: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.
- E. Audible Alarm-Indicating Devices: Mounting height shall be per NFPA 72. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- F. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn. Mounting height shall be per NFPA 72
- G. Device Location-Indicating Lights: Locate in public space near the device they monitor.

- H. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches above the finished floor.
- I. Annunciator: Install with top of panel not more than 72 inches above the finished floor.
- J. Provide a separate power circuit from control panel and/or control module for HVAC unit shutdown system.

3.2 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.
 - 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
 - 2. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 - 3. Alarm-initiating connection to shut-down HVAC units.
 - 4. Supervisory connections at valve supervisory switches.
 - 5. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 - 6. Communication with Access Control security system via relay...

3.3 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

- C. Tests and Inspections:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 - b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with "Test Methods" Table in the "Testing" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
 - 3. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
- D. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- E. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 28 3111

Pages

DIVISION 31 - EARTHWORK

Section 31 3116	Termite Control	 	3

SECTION 31 3116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 QUALITY ASSURANCE
 - A. Chemical soil treatment material and procedures shall comply with current FHA Minimum Property Standards, and the latest requirements of the United States Environmental Protection Agency.
- 1.3 SUBMITTALS
 - A. Submit termite protection warranty in duplicate to the Architect-Engineer in accordance with the General Conditions and General Requirements.

1.4 JOB CONDITIONS

A. Environmental Requirements: Do not apply working solution when soil and fill are frozen or excessively wet, or immediately after heavy rain.

1.5 SCHEDULING

- A. Begin soil treatment work only after preparations for slab placement are complete. Complete treatment prior to placement of vapor barrier under slab on grade.
- B. Begin foundation wall treatment only after footings, foundation walls, pile caps, and other foundation work, including waterproofing, dampproofing, foundation drainage, and subslab plumbing, are complete.
- C. Begin backfill treatment only after backfilling is complete.
- D. Coordinate soil treatment with related work of other trades. If construction in any area is placed before specified treatment is made, provide post-construction treatment at specified rates and absorb the additional expense required by post-construction treatment.

1.6 GUARANTEE

A. Guarantee: Submit in duplicate, to the Architect-Engineer, a guarantee which states that application was made at concentration, rates, and methods which comply with the minimum requirements of these Specifications. Guarantee shall be noncancellable, drawn in favor of the Owner and its successors or assigns, for a period of five years. If subterranean termite activity exists in or under the building during this period, the exterminator shall promptly, and without expense to the Owner, re-treat soil and make good damages caused by subterranean termite activity, limited to fifty thousand dollars (\$50,000.00) maximum repair with proof of active subterranean termite damage.

PART 2 - PRODUCTS

2.1 PRODUCTS

- A. Chemicals: Use only a chemical formulated as an emulsible concentrate for subsequent dilution with water. Do not dilute concentrate with fuel oil. Use one of the following chemicals:
 - 1. Permethrin:
 - a. Dragnet FFR, FMC Corporation.
 - b. Talstar, FMC Corporation.

PART 3 - EXECUTION

3.1 LOCATIONS AND RATE OF APPLICATION (MINIMUM)

- A. Under interior and/or attached exterior slab on grade, apply 1 gallon of toxicant per 10 square feet over earth fill or 1-1/2 gallons of toxicant per 10 square feet over granular material.
- B. Along masonry foundation wall at crawl spaces, apply toxicant to both the inside and outside of wall at the rate of 4 gallons per 10 linear feet per foot of depth measured from the top of footing to finish grade. Apply toxicant to cores of lower block courses at the rate of 2 gallons per linear foot.
- C. Along masonry foundation wall at basements, apply toxicant to the outside of the wall at the rate of 4 gallons per 10 linear feet per foot of depth measured from the top of footing to finish grade. Apply 4 gallons of toxicant per 10 linear feet along the inside of the wall. Apply toxicant to cores of lower block courses at the rate of 2 gallons per linear foot.
- D. Along poured concrete foundation walls, apply 4 gallons of toxicant per 10 linear foot to both the inside and outside of the wall to treat the top 1 foot of soil.
- E. Around piers and plumbing and along both sides of interior partition walls, apply 4 gallons of toxicant per 10 linear foot.
- 3.2 METHODS OF APPLICATION
 - A. Apply toxicant with spray equipment under slab on grade.

GILA COUNTY PUBLIC WORKS ADMINISTRATION BUILDING GLOBE, ARIZONA

B. Apply toxicant with soil injector rod in backfill areas. Insert rod at 12-inch intervals at a distance not to exceed 6 inches from wall. Penetrate rod to within 6 inches of the top of footing.

3.3 **PROTECTION**

A. Do not disturb treated areas during subsequent construction operation or permit slabs to be placed sooner than twelve hours after soil treatment.

END OF SECTION